Source code for pyqtgraph.graphicsItems.PColorMeshItem

import itertools
import warnings

import numpy as np

from .. import Qt, colormap
from .. import functions as fn
from ..Qt import QtCore, QtGui
from .GradientEditorItem import Gradients  # List of colormaps
from .GraphicsObject import GraphicsObject

__all__ = ['PColorMeshItem']


if Qt.QT_LIB.startswith('PyQt'):
    wrapinstance = Qt.sip.wrapinstance
else:
    wrapinstance = Qt.shiboken.wrapInstance


class QuadInstances:
    def __init__(self):
        self.polys = []

    def alloc(self, size):
        self.polys.clear()

        # 2 * (size + 1) vertices, (x, y)
        arr = np.empty((2 * (size + 1), 2), dtype=np.float64)
        ptrs = list(map(wrapinstance,
            itertools.count(arr.ctypes.data, arr.strides[0]),
            itertools.repeat(QtCore.QPointF, arr.shape[0])))

        # arrange into 2 rows, (size + 1) vertices
        points = [ptrs[:len(ptrs)//2], ptrs[len(ptrs)//2:]]
        self.arr = arr.reshape((2, -1, 2))

        # pre-create quads from those 2 rows of QPointF(s)
        for j in range(size):
            bl, tl = points[0][j:j+2]
            br, tr = points[1][j:j+2]
            poly = (bl, br, tr, tl)
            self.polys.append(poly)

    def array(self, size):
        if size != len(self.polys):
            self.alloc(size)
        return self.arr

    def instances(self):
        return self.polys


[docs]class PColorMeshItem(GraphicsObject): """ **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>` """
[docs] def __init__(self, *args, **kwargs): """ Create a pseudocolor plot with convex polygons. Call signature: ``PColorMeshItem([x, y,] z, **kwargs)`` x and y can be used to specify the corners of the quadrilaterals. z must be used to specified to color of the quadrilaterals. Parameters ---------- x, y : np.ndarray, optional, default None 2D array containing the coordinates of the polygons z : np.ndarray 2D array containing the value which will be mapped into the polygons colors. If x and y is None, the polygons will be displaced on a grid otherwise x and y will be used as polygons vertices coordinates as:: (x[i+1, j], y[i+1, j]) (x[i+1, j+1], y[i+1, j+1]) +---------+ | z[i, j] | +---------+ (x[i, j], y[i, j]) (x[i, j+1], y[i, j+1]) "ASCII from: <https://matplotlib.org/3.2.1/api/_as_gen/ matplotlib.pyplot.pcolormesh.html>". colorMap : pg.ColorMap, default pg.colormap.get('viridis') Colormap used to map the z value to colors. edgecolors : dict, default None The color of the edges of the polygons. Default None means no edges. The dict may contains any arguments accepted by :func:`mkColor() <pyqtgraph.mkColor>`. Example: ``mkPen(color='w', width=2)`` antialiasing : bool, default False Whether to draw edgelines with antialiasing. Note that if edgecolors is None, antialiasing is always False. """ GraphicsObject.__init__(self) self.qpicture = None ## rendered picture for display self.x = None self.y = None self.z = None self.edgecolors = kwargs.get('edgecolors', None) self.antialiasing = kwargs.get('antialiasing', False) if 'colorMap' in kwargs: cmap = kwargs.get('colorMap') if not isinstance(cmap, colormap.ColorMap): raise ValueError('colorMap argument must be a ColorMap instance') self.cmap = cmap elif 'cmap' in kwargs: # legacy unadvertised argument for backwards compatibility. # this will only use colormaps from Gradients. # Note that the colors will be wrong for the hsv colormaps. warnings.warn( "The parameter 'cmap' will be removed in a version of PyQtGraph released after Nov 2022.", DeprecationWarning, stacklevel=2 ) cmap = kwargs.get('cmap') if not isinstance(cmap, str) or cmap not in Gradients: raise NameError('Undefined colormap, should be one of the following: '+', '.join(['"'+i+'"' for i in Gradients.keys()])+'.') pos, color = zip(*Gradients[cmap]['ticks']) self.cmap = colormap.ColorMap(pos, color) else: self.cmap = colormap.get('viridis') lut_qcolor = self.cmap.getLookupTable(nPts=256, mode=self.cmap.QCOLOR) self.lut_qbrush = [QtGui.QBrush(x) for x in lut_qcolor] self.quads = QuadInstances() # If some data have been sent we directly display it if len(args)>0: self.setData(*args)
def _prepareData(self, args): """ Check the shape of the data. Return a set of 2d array x, y, z ready to be used to draw the picture. """ # User didn't specified data if len(args)==0: self.x = None self.y = None self.z = None # User only specified z elif len(args)==1: # If x and y is None, the polygons will be displaced on a grid x = np.arange(0, args[0].shape[0]+1, 1) y = np.arange(0, args[0].shape[1]+1, 1) self.x, self.y = np.meshgrid(x, y, indexing='ij') self.z = args[0] # User specified x, y, z elif len(args)==3: # Shape checking if args[0].shape[0] != args[2].shape[0]+1 or args[0].shape[1] != args[2].shape[1]+1: raise ValueError('The dimension of x should be one greater than the one of z') if args[1].shape[0] != args[2].shape[0]+1 or args[1].shape[1] != args[2].shape[1]+1: raise ValueError('The dimension of y should be one greater than the one of z') self.x = args[0] self.y = args[1] self.z = args[2] else: ValueError('Data must been sent as (z) or (x, y, z)')
[docs] def setData(self, *args): """ Set the data to be drawn. Parameters ---------- x, y : np.ndarray, optional, default None 2D array containing the coordinates of the polygons z : np.ndarray 2D array containing the value which will be mapped into the polygons colors. If x and y is None, the polygons will be displaced on a grid otherwise x and y will be used as polygons vertices coordinates as:: (x[i+1, j], y[i+1, j]) (x[i+1, j+1], y[i+1, j+1]) +---------+ | z[i, j] | +---------+ (x[i, j], y[i, j]) (x[i, j+1], y[i, j+1]) "ASCII from: <https://matplotlib.org/3.2.1/api/_as_gen/ matplotlib.pyplot.pcolormesh.html>". """ # Prepare data self._prepareData(args) # Has the view bounds changed shapeChanged = False if self.qpicture is None: shapeChanged = True elif len(args)==1: if args[0].shape[0] != self.x[:,1][-1] or args[0].shape[1] != self.y[0][-1]: shapeChanged = True elif len(args)==3: if np.any(self.x != args[0]) or np.any(self.y != args[1]): shapeChanged = True self.qpicture = QtGui.QPicture() painter = QtGui.QPainter(self.qpicture) # We set the pen of all polygons once if self.edgecolors is None: painter.setPen(QtCore.Qt.PenStyle.NoPen) else: painter.setPen(fn.mkPen(self.edgecolors)) if self.antialiasing: painter.setRenderHint(QtGui.QPainter.RenderHint.Antialiasing) ## Prepare colormap # First we get the LookupTable lut = self.lut_qbrush # Second we associate each z value, that we normalize, to the lut scale = len(lut) - 1 z_min = self.z.min() z_max = self.z.max() rng = z_max - z_min if rng == 0: rng = 1 norm = fn.rescaleData(self.z, scale / rng, z_min, dtype=int, clip=(0, len(lut)-1)) if Qt.QT_LIB.startswith('PyQt'): drawConvexPolygon = lambda x : painter.drawConvexPolygon(*x) else: drawConvexPolygon = painter.drawConvexPolygon memory = self.quads.array(self.z.shape[1]) polys = self.quads.instances() # Go through all the data and draw the polygons accordingly for i in range(self.z.shape[0]): # populate 2 rows of values into points memory[..., 0] = self.x[i:i+2, :] memory[..., 1] = self.y[i:i+2, :] brushes = [lut[z] for z in norm[i].tolist()] for brush, poly in zip(brushes, polys): painter.setBrush(brush) drawConvexPolygon(poly) painter.end() self.update() self.prepareGeometryChange() if shapeChanged: self.informViewBoundsChanged()
def paint(self, p, *args): if self.z is None: return p.drawPicture(0, 0, self.qpicture) def setBorder(self, b): self.border = fn.mkPen(b) self.update() def width(self): if self.x is None: return None return np.max(self.x) def height(self): if self.y is None: return None return np.max(self.y) def boundingRect(self): if self.qpicture is None: return QtCore.QRectF(0., 0., 0., 0.) return QtCore.QRectF(self.qpicture.boundingRect())