Source code for pyqtgraph.graphicsItems.PColorMeshItem

from __future__ import division

from ..Qt import QtGui, QtCore
import numpy as np
from .. import functions as fn
from .. import debug as debug
from .GraphicsObject import GraphicsObject
from ..Point import Point
from .. import getConfigOption
from .GradientEditorItem import Gradients # List of colormaps
from ..colormap import ColorMap

try:
    from collections.abc import Callable
except ImportError:
    # fallback for python < 3.3
    from collections import Callable

__all__ = ['PColorMeshItem']


[docs]class PColorMeshItem(GraphicsObject): """ **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>` """
[docs] def __init__(self, *args, **kwargs): """ Create a pseudocolor plot with convex polygons. Call signature: ``PColorMeshItem([x, y,] z, **kwargs)`` x and y can be used to specify the corners of the quadrilaterals. z must be used to specified to color of the quadrilaterals. Parameters ---------- x, y : np.ndarray, optional, default None 2D array containing the coordinates of the polygons z : np.ndarray 2D array containing the value which will be maped into the polygons colors. If x and y is None, the polygons will be displaced on a grid otherwise x and y will be used as polygons vertices coordinates as:: (x[i+1, j], y[i+1, j]) (x[i+1, j+1], y[i+1, j+1]) +---------+ | z[i, j] | +---------+ (x[i, j], y[i, j]) (x[i, j+1], y[i, j+1]) "ASCII from: <https://matplotlib.org/3.2.1/api/_as_gen/ matplotlib.pyplot.pcolormesh.html>". cmap : str, default 'viridis Colormap used to map the z value to colors. edgecolors : dict, default None The color of the edges of the polygons. Default None means no edges. The dict may contains any arguments accepted by :func:`mkColor() <pyqtgraph.mkColor>`. Example: ``mkPen(color='w', width=2)`` antialiasing : bool, default False Whether to draw edgelines with antialiasing. Note that if edgecolors is None, antialiasing is always False. """ GraphicsObject.__init__(self) self.qpicture = None ## rendered picture for display self.axisOrder = getConfigOption('imageAxisOrder') if 'edgecolors' in kwargs.keys(): self.edgecolors = kwargs['edgecolors'] else: self.edgecolors = None if 'antialiasing' in kwargs.keys(): self.antialiasing = kwargs['antialiasing'] else: self.antialiasing = False if 'cmap' in kwargs.keys(): if kwargs['cmap'] in Gradients.keys(): self.cmap = kwargs['cmap'] else: raise NameError('Undefined colormap, should be one of the following: '+', '.join(['"'+i+'"' for i in Gradients.keys()])+'.') else: self.cmap = 'viridis' # If some data have been sent we directly display it if len(args)>0: self.setData(*args)
def _prepareData(self, args): """ Check the shape of the data. Return a set of 2d array x, y, z ready to be used to draw the picture. """ # User didn't specified data if len(args)==0: self.x = None self.y = None self.z = None # User only specified z elif len(args)==1: # If x and y is None, the polygons will be displaced on a grid x = np.arange(0, args[0].shape[0]+1, 1) y = np.arange(0, args[0].shape[1]+1, 1) self.x, self.y = np.meshgrid(x, y, indexing='ij') self.z = args[0] # User specified x, y, z elif len(args)==3: # Shape checking if args[0].shape[0] != args[2].shape[0]+1 or args[0].shape[1] != args[2].shape[1]+1: raise ValueError('The dimension of x should be one greater than the one of z') if args[1].shape[0] != args[2].shape[0]+1 or args[1].shape[1] != args[2].shape[1]+1: raise ValueError('The dimension of y should be one greater than the one of z') self.x = args[0] self.y = args[1] self.z = args[2] else: ValueError('Data must been sent as (z) or (x, y, z)')
[docs] def setData(self, *args): """ Set the data to be drawn. Parameters ---------- x, y : np.ndarray, optional, default None 2D array containing the coordinates of the polygons z : np.ndarray 2D array containing the value which will be maped into the polygons colors. If x and y is None, the polygons will be displaced on a grid otherwise x and y will be used as polygons vertices coordinates as:: (x[i+1, j], y[i+1, j]) (x[i+1, j+1], y[i+1, j+1]) +---------+ | z[i, j] | +---------+ (x[i, j], y[i, j]) (x[i, j+1], y[i, j+1]) "ASCII from: <https://matplotlib.org/3.2.1/api/_as_gen/ matplotlib.pyplot.pcolormesh.html>". """ # Prepare data cd = self._prepareData(args) # Has the view bounds changed shapeChanged = False if self.qpicture is None: shapeChanged = True elif len(args)==1: if args[0].shape[0] != self.x[:,1][-1] or args[0].shape[1] != self.y[0][-1]: shapeChanged = True elif len(args)==3: if np.any(self.x != args[0]) or np.any(self.y != args[1]): shapeChanged = True self.qpicture = QtGui.QPicture() p = QtGui.QPainter(self.qpicture) # We set the pen of all polygons once if self.edgecolors is None: p.setPen(fn.mkPen(QtGui.QColor(0, 0, 0, 0))) else: p.setPen(fn.mkPen(self.edgecolors)) if self.antialiasing: p.setRenderHint(QtGui.QPainter.RenderHint.Antialiasing) ## Prepare colormap # First we get the LookupTable pos = [i[0] for i in Gradients[self.cmap]['ticks']] color = [i[1] for i in Gradients[self.cmap]['ticks']] cmap = ColorMap(pos, color) lut = cmap.getLookupTable(0.0, 1.0, 256) # Second we associate each z value, that we normalize, to the lut norm = self.z - self.z.min() norm = norm/norm.max() norm = (norm*(len(lut)-1)).astype(int) # Go through all the data and draw the polygons accordingly for xi in range(self.z.shape[0]): for yi in range(self.z.shape[1]): # Set the color of the polygon first c = lut[norm[xi][yi]] p.setBrush(fn.mkBrush(QtGui.QColor(c[0], c[1], c[2]))) polygon = QtGui.QPolygonF( [QtCore.QPointF(self.x[xi][yi], self.y[xi][yi]), QtCore.QPointF(self.x[xi+1][yi], self.y[xi+1][yi]), QtCore.QPointF(self.x[xi+1][yi+1], self.y[xi+1][yi+1]), QtCore.QPointF(self.x[xi][yi+1], self.y[xi][yi+1])] ) # DrawConvexPlygon is faster p.drawConvexPolygon(polygon) p.end() self.update() self.prepareGeometryChange() if shapeChanged: self.informViewBoundsChanged()
def paint(self, p, *args): if self.z is None: return p.drawPicture(0, 0, self.qpicture) def setBorder(self, b): self.border = fn.mkPen(b) self.update() def width(self): if self.x is None: return None return np.max(self.x) def height(self): if self.y is None: return None return np.max(self.y) def boundingRect(self): if self.qpicture is None: return QtCore.QRectF(0., 0., 0., 0.) return QtCore.QRectF(self.qpicture.boundingRect())