Source code for pyqtgraph.graphicsItems.ImageItem

from __future__ import division

from ..Qt import QtGui, QtCore
import numpy as np
from .. import functions as fn
from .. import debug as debug
from .GraphicsObject import GraphicsObject
from ..Point import Point
from .. import getConfigOption

try:
    from collections.abc import Callable
except ImportError:
    # fallback for python < 3.3
    from collections import Callable

__all__ = ['ImageItem']


[docs]class ImageItem(GraphicsObject): """ **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>` GraphicsObject displaying an image. Optimized for rapid update (ie video display). This item displays either a 2D numpy array (height, width) or a 3D array (height, width, RGBa). This array is optionally scaled (see :func:`setLevels <pyqtgraph.ImageItem.setLevels>`) and/or colored with a lookup table (see :func:`setLookupTable <pyqtgraph.ImageItem.setLookupTable>`) before being displayed. ImageItem is frequently used in conjunction with :class:`HistogramLUTItem <pyqtgraph.HistogramLUTItem>` or :class:`HistogramLUTWidget <pyqtgraph.HistogramLUTWidget>` to provide a GUI for controlling the levels and lookup table used to display the image. """ sigImageChanged = QtCore.Signal() sigRemoveRequested = QtCore.Signal(object) # self; emitted when 'remove' is selected from context menu
[docs] def __init__(self, image=None, **kargs): """ See :func:`setImage <pyqtgraph.ImageItem.setImage>` for all allowed initialization arguments. """ GraphicsObject.__init__(self) self.menu = None self.image = None ## original image data self.qimage = None ## rendered image for display self.paintMode = None self.levels = None ## [min, max] or [[redMin, redMax], ...] self.lut = None self.autoDownsample = False self._lastDownsample = (1, 1) self.axisOrder = getConfigOption('imageAxisOrder') # In some cases, we use a modified lookup table to handle both rescaling # and LUT more efficiently self._effectiveLut = None self.drawKernel = None self.border = None self.removable = False if image is not None: self.setImage(image, **kargs) else: self.setOpts(**kargs)
[docs] def setCompositionMode(self, mode): """Change the composition mode of the item (see QPainter::CompositionMode in the Qt documentation). This is useful when overlaying multiple ImageItems. ============================================ ============================================================ **Most common arguments:** QtGui.QPainter.CompositionMode_SourceOver Default; image replaces the background if it is opaque. Otherwise, it uses the alpha channel to blend the image with the background. QtGui.QPainter.CompositionMode_Overlay The image color is mixed with the background color to reflect the lightness or darkness of the background. QtGui.QPainter.CompositionMode_Plus Both the alpha and color of the image and background pixels are added together. QtGui.QPainter.CompositionMode_Multiply The output is the image color multiplied by the background. ============================================ ============================================================ """ self.paintMode = mode self.update()
def setBorder(self, b): self.border = fn.mkPen(b) self.update() def width(self): if self.image is None: return None axis = 0 if self.axisOrder == 'col-major' else 1 return self.image.shape[axis] def height(self): if self.image is None: return None axis = 1 if self.axisOrder == 'col-major' else 0 return self.image.shape[axis] def channels(self): if self.image is None: return None return self.image.shape[2] if self.image.ndim == 3 else 1 def boundingRect(self): if self.image is None: return QtCore.QRectF(0., 0., 0., 0.) return QtCore.QRectF(0., 0., float(self.width()), float(self.height()))
[docs] def setLevels(self, levels, update=True): """ Set image scaling levels. Can be one of: * [blackLevel, whiteLevel] * [[minRed, maxRed], [minGreen, maxGreen], [minBlue, maxBlue]] Only the first format is compatible with lookup tables. See :func:`makeARGB <pyqtgraph.makeARGB>` for more details on how levels are applied. """ if levels is not None: levels = np.asarray(levels) if not fn.eq(levels, self.levels): self.levels = levels self._effectiveLut = None if update: self.updateImage()
def getLevels(self): return self.levels #return self.whiteLevel, self.blackLevel
[docs] def setLookupTable(self, lut, update=True): """ Set the lookup table (numpy array) to use for this image. (see :func:`makeARGB <pyqtgraph.makeARGB>` for more information on how this is used). Optionally, lut can be a callable that accepts the current image as an argument and returns the lookup table to use. Ordinarily, this table is supplied by a :class:`HistogramLUTItem <pyqtgraph.HistogramLUTItem>` or :class:`GradientEditorItem <pyqtgraph.GradientEditorItem>`. """ if lut is not self.lut: self.lut = lut self._effectiveLut = None if update: self.updateImage()
[docs] def setAutoDownsample(self, ads): """ Set the automatic downsampling mode for this ImageItem. Added in version 0.9.9 """ self.autoDownsample = ads self.qimage = None self.update()
def setOpts(self, update=True, **kargs): if 'axisOrder' in kargs: val = kargs['axisOrder'] if val not in ('row-major', 'col-major'): raise ValueError('axisOrder must be either "row-major" or "col-major"') self.axisOrder = val if 'lut' in kargs: self.setLookupTable(kargs['lut'], update=update) if 'levels' in kargs: self.setLevels(kargs['levels'], update=update) #if 'clipLevel' in kargs: #self.setClipLevel(kargs['clipLevel']) if 'opacity' in kargs: self.setOpacity(kargs['opacity']) if 'compositionMode' in kargs: self.setCompositionMode(kargs['compositionMode']) if 'border' in kargs: self.setBorder(kargs['border']) if 'removable' in kargs: self.removable = kargs['removable'] self.menu = None if 'autoDownsample' in kargs: self.setAutoDownsample(kargs['autoDownsample']) if update: self.update()
[docs] def setRect(self, rect): """Scale and translate the image to fit within rect (must be a QRect or QRectF).""" self.resetTransform() self.translate(rect.left(), rect.top()) self.scale(rect.width() / self.width(), rect.height() / self.height())
def clear(self): self.image = None self.prepareGeometryChange() self.informViewBoundsChanged() self.update()
[docs] def setImage(self, image=None, autoLevels=None, **kargs): """ Update the image displayed by this item. For more information on how the image is processed before displaying, see :func:`makeARGB <pyqtgraph.makeARGB>` ================= ========================================================================= **Arguments:** image (numpy array) Specifies the image data. May be 2D (width, height) or 3D (width, height, RGBa). The array dtype must be integer or floating point of any bit depth. For 3D arrays, the third dimension must be of length 3 (RGB) or 4 (RGBA). See *notes* below. autoLevels (bool) If True, this forces the image to automatically select levels based on the maximum and minimum values in the data. By default, this argument is true unless the levels argument is given. lut (numpy array) The color lookup table to use when displaying the image. See :func:`setLookupTable <pyqtgraph.ImageItem.setLookupTable>`. levels (min, max) The minimum and maximum values to use when rescaling the image data. By default, this will be set to the minimum and maximum values in the image. If the image array has dtype uint8, no rescaling is necessary. opacity (float 0.0-1.0) compositionMode See :func:`setCompositionMode <pyqtgraph.ImageItem.setCompositionMode>` border Sets the pen used when drawing the image border. Default is None. autoDownsample (bool) If True, the image is automatically downsampled to match the screen resolution. This improves performance for large images and reduces aliasing. If autoDownsample is not specified, then ImageItem will choose whether to downsample the image based on its size. ================= ========================================================================= **Notes:** For backward compatibility, image data is assumed to be in column-major order (column, row). However, most image data is stored in row-major order (row, column) and will need to be transposed before calling setImage():: imageitem.setImage(imagedata.T) This requirement can be changed by calling ``image.setOpts(axisOrder='row-major')`` or by changing the ``imageAxisOrder`` :ref:`global configuration option <apiref_config>`. """ profile = debug.Profiler() gotNewData = False if image is None: if self.image is None: return else: gotNewData = True shapeChanged = (self.image is None or image.shape != self.image.shape) image = image.view(np.ndarray) if self.image is None or image.dtype != self.image.dtype: self._effectiveLut = None self.image = image if self.image.shape[0] > 2**15-1 or self.image.shape[1] > 2**15-1: if 'autoDownsample' not in kargs: kargs['autoDownsample'] = True if shapeChanged: self.prepareGeometryChange() self.informViewBoundsChanged() profile() if autoLevels is None: if 'levels' in kargs: autoLevels = False else: autoLevels = True if autoLevels: img = self.image while img.size > 2**16: img = img[::2, ::2] mn, mx = np.nanmin(img), np.nanmax(img) # mn and mx can still be NaN if the data is all-NaN if mn == mx or np.isnan(mn) or np.isnan(mx): mn = 0 mx = 255 kargs['levels'] = [mn,mx] profile() self.setOpts(update=False, **kargs) profile() self.qimage = None self.update() profile() if gotNewData: self.sigImageChanged.emit()
[docs] def dataTransform(self): """Return the transform that maps from this image's input array to its local coordinate system. This transform corrects for the transposition that occurs when image data is interpreted in row-major order. """ # Might eventually need to account for downsampling / clipping here tr = QtGui.QTransform() if self.axisOrder == 'row-major': # transpose tr.scale(1, -1) tr.rotate(-90) return tr
[docs] def inverseDataTransform(self): """Return the transform that maps from this image's local coordinate system to its input array. See dataTransform() for more information. """ tr = QtGui.QTransform() if self.axisOrder == 'row-major': # transpose tr.scale(1, -1) tr.rotate(-90) return tr
def mapToData(self, obj): tr = self.inverseDataTransform() return tr.map(obj) def mapFromData(self, obj): tr = self.dataTransform() return tr.map(obj)
[docs] def quickMinMax(self, targetSize=1e6): """ Estimate the min/max values of the image data by subsampling. """ data = self.image while data.size > targetSize: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[sl] return np.nanmin(data), np.nanmax(data)
def updateImage(self, *args, **kargs): ## used for re-rendering qimage from self.image. ## can we make any assumptions here that speed things up? ## dtype, range, size are all the same? defaults = { 'autoLevels': False, } defaults.update(kargs) return self.setImage(*args, **defaults) def render(self): # Convert data to QImage for display. profile = debug.Profiler() if self.image is None or self.image.size == 0: return # Request a lookup table if this image has only one channel if self.image.ndim == 2 or self.image.shape[2] == 1: if isinstance(self.lut, Callable): lut = self.lut(self.image) else: lut = self.lut else: lut = None if self.autoDownsample: # reduce dimensions of image based on screen resolution o = self.mapToDevice(QtCore.QPointF(0,0)) x = self.mapToDevice(QtCore.QPointF(1,0)) y = self.mapToDevice(QtCore.QPointF(0,1)) # Check if graphics view is too small to render anything if o is None or x is None or y is None: return w = Point(x-o).length() h = Point(y-o).length() if w == 0 or h == 0: self.qimage = None return xds = max(1, int(1.0 / w)) yds = max(1, int(1.0 / h)) axes = [1, 0] if self.axisOrder == 'row-major' else [0, 1] image = fn.downsample(self.image, xds, axis=axes[0]) image = fn.downsample(image, yds, axis=axes[1]) self._lastDownsample = (xds, yds) # Check if downsampling reduced the image size to zero due to inf values. if image.size == 0: return else: image = self.image # if the image data is a small int, then we can combine levels + lut # into a single lut for better performance levels = self.levels if levels is not None and levels.ndim == 1 and image.dtype in (np.ubyte, np.uint16): if self._effectiveLut is None: eflsize = 2**(image.itemsize*8) ind = np.arange(eflsize) minlev, maxlev = levels levdiff = maxlev - minlev levdiff = 1 if levdiff == 0 else levdiff # don't allow division by 0 if lut is None: efflut = fn.rescaleData(ind, scale=255./levdiff, offset=minlev, dtype=np.ubyte) else: lutdtype = np.min_scalar_type(lut.shape[0]-1) efflut = fn.rescaleData(ind, scale=(lut.shape[0]-1)/levdiff, offset=minlev, dtype=lutdtype, clip=(0, lut.shape[0]-1)) efflut = lut[efflut] self._effectiveLut = efflut lut = self._effectiveLut levels = None # Convert single-channel image to 2D array if image.ndim == 3 and image.shape[-1] == 1: image = image[..., 0] # Assume images are in column-major order for backward compatibility # (most images are in row-major order) if self.axisOrder == 'col-major': image = image.transpose((1, 0, 2)[:image.ndim]) argb, alpha = fn.makeARGB(image, lut=lut, levels=levels) self.qimage = fn.makeQImage(argb, alpha, transpose=False) def paint(self, p, *args): profile = debug.Profiler() if self.image is None: return if self.qimage is None: self.render() if self.qimage is None: return profile('render QImage') if self.paintMode is not None: p.setCompositionMode(self.paintMode) profile('set comp mode') shape = self.image.shape[:2] if self.axisOrder == 'col-major' else self.image.shape[:2][::-1] p.drawImage(QtCore.QRectF(0,0,*shape), self.qimage) profile('p.drawImage') if self.border is not None: p.setPen(self.border) p.drawRect(self.boundingRect())
[docs] def save(self, fileName, *args): """Save this image to file. Note that this saves the visible image (after scale/color changes), not the original data.""" if self.qimage is None: self.render() self.qimage.save(fileName, *args)
[docs] def getHistogram(self, bins='auto', step='auto', perChannel=False, targetImageSize=200, targetHistogramSize=500, **kwds): """Returns x and y arrays containing the histogram values for the current image. For an explanation of the return format, see numpy.histogram(). The *step* argument causes pixels to be skipped when computing the histogram to save time. If *step* is 'auto', then a step is chosen such that the analyzed data has dimensions roughly *targetImageSize* for each axis. The *bins* argument and any extra keyword arguments are passed to np.histogram(). If *bins* is 'auto', then a bin number is automatically chosen based on the image characteristics: * Integer images will have approximately *targetHistogramSize* bins, with each bin having an integer width. * All other types will have *targetHistogramSize* bins. If *perChannel* is True, then the histogram is computed once per channel and the output is a list of the results. This method is also used when automatically computing levels. """ if self.image is None or self.image.size == 0: return None, None if step == 'auto': step = (max(1, int(np.ceil(self.image.shape[0] / targetImageSize))), max(1, int(np.ceil(self.image.shape[1] / targetImageSize)))) if np.isscalar(step): step = (step, step) stepData = self.image[::step[0], ::step[1]] if isinstance(bins, str) and bins == 'auto': mn = np.nanmin(stepData) mx = np.nanmax(stepData) if mx == mn: # degenerate image, arange will fail mx += 1 if np.isnan(mn) or np.isnan(mx): # the data are all-nan return None, None if stepData.dtype.kind in "ui": # For integer data, we select the bins carefully to avoid aliasing step = np.ceil((mx-mn) / 500.) bins = np.arange(mn, mx+1.01*step, step, dtype=np.int) else: # for float data, let numpy select the bins. bins = np.linspace(mn, mx, 500) if len(bins) == 0: bins = [mn, mx] kwds['bins'] = bins if perChannel: hist = [] for i in range(stepData.shape[-1]): stepChan = stepData[..., i] stepChan = stepChan[np.isfinite(stepChan)] h = np.histogram(stepChan, **kwds) hist.append((h[1][:-1], h[0])) return hist else: stepData = stepData[np.isfinite(stepData)] hist = np.histogram(stepData, **kwds) return hist[1][:-1], hist[0]
[docs] def setPxMode(self, b): """ Set whether the item ignores transformations and draws directly to screen pixels. If True, the item will not inherit any scale or rotation transformations from its parent items, but its position will be transformed as usual. (see GraphicsItem::ItemIgnoresTransformations in the Qt documentation) """ self.setFlag(self.ItemIgnoresTransformations, b)
def setScaledMode(self): self.setPxMode(False) def getPixmap(self): if self.qimage is None: self.render() if self.qimage is None: return None return QtGui.QPixmap.fromImage(self.qimage)
[docs] def pixelSize(self): """return scene-size of a single pixel in the image""" br = self.sceneBoundingRect() if self.image is None: return 1,1 return br.width()/self.width(), br.height()/self.height()
def viewTransformChanged(self): if self.autoDownsample: o = self.mapToDevice(QtCore.QPointF(0,0)) x = self.mapToDevice(QtCore.QPointF(1,0)) y = self.mapToDevice(QtCore.QPointF(0,1)) w = Point(x-o).length() h = Point(y-o).length() if w == 0 or h == 0: self.qimage = None return xds = max(1, int(1.0 / w)) yds = max(1, int(1.0 / h)) if (xds, yds) != self._lastDownsample: self.qimage = None self.update() def mouseDragEvent(self, ev): if ev.button() != QtCore.Qt.LeftButton: ev.ignore() return elif self.drawKernel is not None: ev.accept() self.drawAt(ev.pos(), ev) def mouseClickEvent(self, ev): if ev.button() == QtCore.Qt.RightButton: if self.raiseContextMenu(ev): ev.accept() if self.drawKernel is not None and ev.button() == QtCore.Qt.LeftButton: self.drawAt(ev.pos(), ev) def raiseContextMenu(self, ev): menu = self.getMenu() if menu is None: return False menu = self.scene().addParentContextMenus(self, menu, ev) pos = ev.screenPos() menu.popup(QtCore.QPoint(pos.x(), pos.y())) return True def getMenu(self): if self.menu is None: if not self.removable: return None self.menu = QtGui.QMenu() self.menu.setTitle("Image") remAct = QtGui.QAction("Remove image", self.menu) remAct.triggered.connect(self.removeClicked) self.menu.addAction(remAct) self.menu.remAct = remAct return self.menu def hoverEvent(self, ev): if not ev.isExit() and self.drawKernel is not None and ev.acceptDrags(QtCore.Qt.LeftButton): ev.acceptClicks(QtCore.Qt.LeftButton) ## we don't use the click, but we also don't want anyone else to use it. ev.acceptClicks(QtCore.Qt.RightButton) elif not ev.isExit() and self.removable: ev.acceptClicks(QtCore.Qt.RightButton) ## accept context menu clicks def tabletEvent(self, ev): pass #print(ev.device()) #print(ev.pointerType()) #print(ev.pressure()) def drawAt(self, pos, ev=None): pos = [int(pos.x()), int(pos.y())] dk = self.drawKernel kc = self.drawKernelCenter sx = [0,dk.shape[0]] sy = [0,dk.shape[1]] tx = [pos[0] - kc[0], pos[0] - kc[0]+ dk.shape[0]] ty = [pos[1] - kc[1], pos[1] - kc[1]+ dk.shape[1]] for i in [0,1]: dx1 = -min(0, tx[i]) dx2 = min(0, self.image.shape[0]-tx[i]) tx[i] += dx1+dx2 sx[i] += dx1+dx2 dy1 = -min(0, ty[i]) dy2 = min(0, self.image.shape[1]-ty[i]) ty[i] += dy1+dy2 sy[i] += dy1+dy2 ts = (slice(tx[0],tx[1]), slice(ty[0],ty[1])) ss = (slice(sx[0],sx[1]), slice(sy[0],sy[1])) mask = self.drawMask src = dk if isinstance(self.drawMode, Callable): self.drawMode(dk, self.image, mask, ss, ts, ev) else: src = src[ss] if self.drawMode == 'set': if mask is not None: mask = mask[ss] self.image[ts] = self.image[ts] * (1-mask) + src * mask else: self.image[ts] = src elif self.drawMode == 'add': self.image[ts] += src else: raise Exception("Unknown draw mode '%s'" % self.drawMode) self.updateImage() def setDrawKernel(self, kernel=None, mask=None, center=(0,0), mode='set'): self.drawKernel = kernel self.drawKernelCenter = center self.drawMode = mode self.drawMask = mask def removeClicked(self): ## Send remove event only after we have exited the menu event handler self.removeTimer = QtCore.QTimer() self.removeTimer.timeout.connect(self.emitRemoveRequested) self.removeTimer.start(0) def emitRemoveRequested(self): self.removeTimer.timeout.disconnect(self.emitRemoveRequested) self.sigRemoveRequested.emit(self)