Source code for pyqtgraph.graphicsItems.PlotDataItem

import warnings

import numpy as np

from .. import debug as debug
from .. import functions as fn
from .. import getConfigOption
from ..Qt import QtCore
from .GraphicsObject import GraphicsObject
from .PlotCurveItem import PlotCurveItem
from .ScatterPlotItem import ScatterPlotItem

__all__ = ['PlotDataItem']

class PlotDataset(object):
    """
    :orphan:
    .. warning:: This class is intended for internal use. The interface may change without warning.

    Holds collected information for a plotable dataset. 
    Numpy arrays containing x and y coordinates are available as ``dataset.x`` and ``dataset.y``.
    
    After a search has been performed, typically during a call to :func:`dataRect() <pyqtgraph.PlotDataset.dataRect>`, 
    ``dataset.containsNonfinite`` is `True` if any coordinate values are nonfinite (e.g. NaN or inf) or `False` if all 
    values are finite. If no search has been performed yet, ``dataset.containsNonfinite`` is `None`.

    For internal use in :class:`PlotDataItem <pyqtgraph.PlotDataItem>`, this class should not be instantiated when no data is available. 
    """
    def __init__(self, x, y):
        """ 
        Parameters
        ----------
        x: array
            x coordinates of data points. 
        y: array
            y coordinates of data points. 
        """
        super().__init__()
        self.x = x
        self.y = y
        self._dataRect = None
        self.containsNonfinite = None
        
    def _updateDataRect(self):
        """ 
        Finds bounds of plotable data and stores them as ``dataset._dataRect``, 
        stores information about the presence of nonfinite data points.
            """
        if self.y is None or self.x is None:
            return None
        if self.containsNonfinite is False: # all points are directly usable.
            ymin = np.min( self.y ) # find minimum of all values
            ymax = np.max( self.y ) # find maximum of all values
            xmin = np.min( self.x ) # find minimum of all values
            xmax = np.max( self.x ) # find maximum of all values
        else: # This may contain NaN values and infinites.
            selection = np.isfinite(self.y)    # We are looking for the bounds of the plottable data set. Infinite and Nan are ignored. 
            all_y_are_finite = selection.all() # False if all values are finite, True if there are any non-finites
            try:
                ymin = np.min( self.y[selection] ) # find minimum of all finite values
                ymax = np.max( self.y[selection] ) # find maximum of all finite values
            except ValueError: # is raised when there are no finite values
                ymin = np.nan
                ymax = np.nan
            selection = np.isfinite(self.x) # We are looking for the bounds of the plottable data set. Infinite and Nan are ignored. 
            all_x_are_finite = selection.all() # False if all values are finite, True if there are any non-finites
            try:
                xmin = np.min( self.x[selection] ) # find minimum of all finite values
                xmax = np.max( self.x[selection] ) # find maximum of all finite values
            except ValueError: # is raised when there are no finite values
                xmin = np.nan
                xmax = np.nan
            self.containsNonfinite = not (all_x_are_finite and all_y_are_finite) # This always yields a definite True/False answer
        self._dataRect = QtCore.QRectF( QtCore.QPointF(xmin,ymin), QtCore.QPointF(xmax,ymax) )
        
    def dataRect(self):
        """
        Returns a bounding rectangle (as :class:`QtCore.QRectF`) for the finite subset of data.
        If there is an active mapping function, such as logarithmic scaling, then bounds represent the mapped data. 
        Will return `None` if there is no data or if all values (`x` or `y`) are NaN.
        """
        if self._dataRect is None: 
            self._updateDataRect()
        return self._dataRect

    def applyLogMapping(self, logMode):
        """
        Applies a logarithmic mapping transformation (base 10) if requested for the respective axis.
        This replaces the internal data. Values of ``-inf`` resulting from zeros in the original dataset are
        replaced by ``np.NaN``.
        
        Parameters
        ----------
        logmode: tuple or list of two bool
            A `True` value requests log-scale mapping for the x and y axis (in this order).
        """
        all_x_finite = False
        if logMode[0]:
            with warnings.catch_warnings():
                warnings.simplefilter("ignore", RuntimeWarning)
                self.x = np.log10(self.x)
            nonfinites = ~np.isfinite( self.x )
            if nonfinites.any():
                self.x[nonfinites] = np.nan # set all non-finite values to NaN
                self.containsNonfinite = True
            else:
                all_x_finite = True
        all_y_finite = False
        if logMode[1]:
            with warnings.catch_warnings():
                warnings.simplefilter("ignore", RuntimeWarning)
                self.y = np.log10(self.y)
            nonfinites = ~np.isfinite( self.y )
            if nonfinites.any():
                self.y[nonfinites] = np.nan # set all non-finite values to NaN
                self.containsNonfinite = True
            else:
                all_y_finite = True
        if all_x_finite and all_y_finite: 
            self.containsNonfinite = False # mark as False only if both axes were checked.
        
[docs]class PlotDataItem(GraphicsObject): """ **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>` :class:`PlotDataItem` provides a unified interface for displaying plot curves, scatter plots, or both. It also contains methods to transform or decimate the original data before it is displayed. As pyqtgraph's standard plotting object, ``plot()`` methods such as :func:`pyqtgraph.plot` and :func:`PlotItem.plot() <pyqtgraph.PlotItem.plot>` create instances of :class:`PlotDataItem`. While it is possible to use :class:`PlotCurveItem <pyqtgraph.PlotCurveItem>` or :class:`ScatterPlotItem <pyqtgraph.ScatterPlotItem>` individually, this is recommended only where performance is critical and the limited functionality of these classes is sufficient. ================================== ============================================== **Signals:** sigPlotChanged(self) Emitted when the data in this item is updated. sigClicked(self, ev) Emitted when the item is clicked. sigPointsClicked(self, points, ev) Emitted when a plot point is clicked Sends the list of points under the mouse. sigPointsHovered(self, points, ev) Emitted when a plot point is hovered over. Sends the list of points under the mouse. ================================== ============================================== """ sigPlotChanged = QtCore.Signal(object) sigClicked = QtCore.Signal(object, object) sigPointsClicked = QtCore.Signal(object, object, object) sigPointsHovered = QtCore.Signal(object, object, object) # **(x,y data only)**
[docs] def __init__(self, *args, **kargs): """ There are many different ways to create a PlotDataItem. **Data initialization arguments:** (x,y data only) ========================== ========================================= PlotDataItem(x, y) x, y: array_like coordinate values PlotDataItem(y) y values only -- x will be automatically set to ``range(len(y))`` PlotDataItem(x=x, y=y) x and y given by keyword arguments PlotDataItem(ndarray(N,2)) single numpy array with shape (N, 2), where ``x=data[:,0]`` and ``y=data[:,1]`` ========================== ========================================= **Data initialization arguments:** (x,y data AND may include spot style) ============================ =============================================== PlotDataItem(recarray) numpy record array with ``dtype=[('x', float), ('y', float), ...]`` PlotDataItem(list-of-dicts) ``[{'x': x, 'y': y, ...}, ...]`` PlotDataItem(dict-of-lists) ``{'x': [...], 'y': [...], ...}`` ============================ =============================================== **Line style keyword arguments:** ============ ============================================================================== connect Specifies how / whether vertexes should be connected. See below for details. pen Pen to use for drawing the lines between points. Default is solid grey, 1px width. Use None to disable line drawing. May be a ``QPen`` or any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>` shadowPen Pen for secondary line to draw behind the primary line. Disabled by default. May be a ``QPen`` or any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>` fillLevel If specified, the area between the curve and fillLevel is filled. fillOutline (bool) If True, an outline surrounding the *fillLevel* area is drawn. fillBrush Fill to use in the *fillLevel* area. May be any single argument accepted by :func:`mkBrush() <pyqtgraph.mkBrush>` stepMode (str or None) If specified and not None, a stepped curve is drawn. For 'left' the specified points each describe the left edge of a step. For 'right', they describe the right edge. For 'center', the x coordinates specify the location of the step boundaries. This mode is commonly used for histograms. Note that it requires an additional x value, such that len(x) = len(y) + 1 . ============ ============================================================================== ``connect`` supports the following arguments: - 'all' connects all points. - 'pairs' generates lines between every other point. - 'finite' creates a break when a nonfinite points is encountered. - If an ndarray is passed, it should contain `N` int32 values of 0 or 1. Values of 1 indicate that the respective point will be connected to the next. - In the default 'auto' mode, PlotDataItem will normally use 'all', but if any nonfinite data points are detected, it will automatically switch to 'finite'. See :func:`arrayToQPath() <pyqtgraph.arrayToQPath>` for more details. **Point style keyword arguments:** (see :func:`ScatterPlotItem.setData() <pyqtgraph.ScatterPlotItem.setData>` for more information) ============ ====================================================== symbol Symbol to use for drawing points, or a list of symbols for each. The default is no symbol. symbolPen Outline pen for drawing points, or a list of pens, one per point. May be any single argument accepted by :func:`mkPen() <pyqtgraph.mkPen>`. symbolBrush Brush for filling points, or a list of brushes, one per point. May be any single argument accepted by :func:`mkBrush() <pyqtgraph.mkBrush>`. symbolSize Diameter of symbols, or list of diameters. pxMode (bool) If True, then symbolSize is specified in pixels. If False, then symbolSize is specified in data coordinates. ============ ====================================================== Any symbol recognized by :class:`ScatterPlotItem <pyqtgraph.ScatterPlotItem>` can be specified, including 'o' (circle), 's' (square), 't', 't1', 't2', 't3' (triangles of different orientation), 'd' (diamond), '+' (plus sign), 'x' (x mark), 'p' (pentagon), 'h' (hexagon) and 'star'. Symbols can also be directly given in the form of a :class:`QtGui.QPainterPath` instance. **Optimization keyword arguments:** ================= ======================================================================= antialias (bool) By default, antialiasing is disabled to improve performance. Note that in some cases (in particular, when ``pxMode=True``), points will be rendered antialiased even if this is set to `False`. downsample (int) Reduce the number of samples displayed by the given factor. downsampleMethod 'subsample': Downsample by taking the first of N samples. This method is fastest and least accurate. 'mean': Downsample by taking the mean of N samples. 'peak': Downsample by drawing a saw wave that follows the min and max of the original data. This method produces the best visual representation of the data but is slower. autoDownsample (bool) If `True`, resample the data before plotting to avoid plotting multiple line segments per pixel. This can improve performance when viewing very high-density data, but increases the initial overhead and memory usage. clipToView (bool) If `True`, only data visible within the X range of the containing :class:`ViewBox` is plotted. This can improve performance when plotting very large data sets where only a fraction of the data is visible at any time. dynamicRangeLimit (float or `None`) Limit off-screen y positions of data points. `None` disables the limiting. This can increase performance but may cause plots to disappear at high levels of magnification. The default of 1e6 limits data to approximately 1,000,000 times the :class:`ViewBox` height. dynamicRangeHyst (float) Permits changes in vertical zoom up to the given hysteresis factor (the default is 3.0) before the limit calculation is repeated. skipFiniteCheck (bool, default `False`) Optimization flag that can speed up plotting by not checking and compensating for NaN values. If set to `True`, and NaN values exist, unpredictable behavior will occur. The data may not be displayed or the plot may take a significant performance hit. In the default 'auto' connect mode, `PlotDataItem` will apply this setting automatically. ================= ======================================================================= **Meta-info keyword arguments:** ========== ================================================ name (string) Name of item for use in the plot legend ========== ================================================ **Notes on performance:** Plotting lines with the default single-pixel width is the fastest available option. For such lines, translucent colors (`alpha` < 1) do not result in a significant slowdown. Wider lines increase the complexity due to the overlap of individual line segments. Translucent colors require merging the entire plot into a single entity before the alpha value can be applied. For plots with more than a few hundred points, this can result in excessive slowdown. Since version 0.12.4, this slowdown is automatically avoided by an algorithm that draws line segments separately for fully opaque lines. Setting `alpha` < 1 reverts to the previous, slower drawing method. For lines with a width of more than 4 pixels, :func:`pyqtgraph.mkPen() <pyqtgraph.mkPen>` will automatically create a ``QPen`` with `Qt.PenCapStyle.RoundCap` to ensure a smooth connection of line segments. This incurs a small performance penalty. """ GraphicsObject.__init__(self) self.setFlag(self.GraphicsItemFlag.ItemHasNoContents) # Original data, mapped data, and data processed for display is now all held in PlotDataset objects. # The convention throughout PlotDataItem is that a PlotDataset is only instantiated if valid data is available. self._dataset = None # will hold a PlotDataset for the original data, accessed by getOriginalData() self._datasetMapped = None # will hold a PlotDataset for data after mapping transforms (e.g. log scale) self._datasetDisplay = None # will hold a PlotDataset for data downsampled and limited for display, accessed by getData() self.curve = PlotCurveItem() self.scatter = ScatterPlotItem() self.curve.setParentItem(self) self.scatter.setParentItem(self) self.curve.sigClicked.connect(self.curveClicked) self.scatter.sigClicked.connect(self.scatterClicked) self.scatter.sigHovered.connect(self.scatterHovered) # self._xViewRangeWasChanged = False # self._yViewRangeWasChanged = False # self._styleWasChanged = True # force initial update # update-required notifications are handled through properties to allow future management through # the QDynamicPropertyChangeEvent sent on any change. self.setProperty('xViewRangeWasChanged', False) self.setProperty('yViewRangeWasChanged', False) self.setProperty('styleWasChanged', True) # force initial update self._drlLastClip = (0.0, 0.0) # holds last clipping points of dynamic range limiter #self.clear() self.opts = { 'connect': 'auto', # defaults to 'all', unless overridden to 'finite' for log-scaling 'skipFiniteCheck': False, 'fftMode': False, 'logMode': [False, False], 'derivativeMode': False, 'phasemapMode': False, 'alphaHint': 1.0, 'alphaMode': False, 'pen': (200,200,200), 'shadowPen': None, 'fillLevel': None, 'fillOutline': False, 'fillBrush': None, 'stepMode': None, 'symbol': None, 'symbolSize': 10, 'symbolPen': (200,200,200), 'symbolBrush': (50, 50, 150), 'pxMode': True, 'antialias': getConfigOption('antialias'), 'pointMode': None, 'downsample': 1, 'autoDownsample': False, 'downsampleMethod': 'peak', 'autoDownsampleFactor': 5., # draw ~5 samples per pixel 'clipToView': False, 'dynamicRangeLimit': 1e6, 'dynamicRangeHyst': 3.0, 'data': None, } self.setCurveClickable(kargs.get('clickable', False)) self.setData(*args, **kargs)
# Compatibility with direct property access to previous xData and yData structures: @property def xData(self): if self._dataset is None: return None return self._dataset.x @property def yData(self): if self._dataset is None: return None return self._dataset.y def implements(self, interface=None): ints = ['plotData'] if interface is None: return ints return interface in ints
[docs] def name(self): """ Returns the name that represents this item in the legend. """ return self.opts.get('name', None)
[docs] def setCurveClickable(self, state, width=None): """ ``state=True`` sets the curve to be clickable, with a tolerance margin represented by `width`. """ self.curve.setClickable(state, width)
[docs] def curveClickable(self): """ Returns `True` if the curve is set to be clickable. """ return self.curve.clickable
def boundingRect(self): return QtCore.QRectF() ## let child items handle this def setPos(self, x, y): GraphicsObject.setPos(self, x, y) # to update viewRect: self.viewTransformChanged() # to update displayed point sets, e.g. when clipping (which uses viewRect): self.viewRangeChanged() def setAlpha(self, alpha, auto): if self.opts['alphaHint'] == alpha and self.opts['alphaMode'] == auto: return self.opts['alphaHint'] = alpha self.opts['alphaMode'] = auto self.setOpacity(alpha) #self.update()
[docs] def setFftMode(self, state): """ ``state = True`` enables mapping the data by a fast Fourier transform. If the `x` values are not equidistant, the data set is resampled at equal intervals. """ if self.opts['fftMode'] == state: return self.opts['fftMode'] = state self._datasetMapped = None self._datasetDisplay = None self.updateItems(styleUpdate=False) self.informViewBoundsChanged()
[docs] def setLogMode(self, xState, yState): """ When log mode is enabled for the respective axis by setting ``xState`` or ``yState`` to `True`, a mapping according to ``mapped = np.log10( value )`` is applied to the data. For negative or zero values, this results in a `NaN` value. """ if self.opts['logMode'] == [xState, yState]: return self.opts['logMode'] = [xState, yState] self._datasetMapped = None # invalidate mapped data self._datasetDisplay = None # invalidate display data self.updateItems(styleUpdate=False) self.informViewBoundsChanged()
[docs] def setDerivativeMode(self, state): """ ``state = True`` enables derivative mode, where a mapping according to ``y_mapped = dy / dx`` is applied, with `dx` and `dy` representing the differences between adjacent `x` and `y` values. """ if self.opts['derivativeMode'] == state: return self.opts['derivativeMode'] = state self._datasetMapped = None # invalidate mapped data self._datasetDisplay = None # invalidate display data self.updateItems(styleUpdate=False) self.informViewBoundsChanged()
[docs] def setPhasemapMode(self, state): """ ``state = True`` enables phase map mode, where a mapping according to ``x_mappped = y`` and ``y_mapped = dy / dx`` is applied, plotting the numerical derivative of the data over the original `y` values. """ if self.opts['phasemapMode'] == state: return self.opts['phasemapMode'] = state self._datasetMapped = None # invalidate mapped data self._datasetDisplay = None # invalidate display data self.updateItems(styleUpdate=False) self.informViewBoundsChanged()
def setPointMode(self, state): # This does not seem to do anything, but PlotItem still seems to call it. # warnings.warn( # 'setPointMode has been deprecated, and has no effect. It will be removed from the library in the first release following April, 2022.', # DeprecationWarning, stacklevel=2 # ) if self.opts['pointMode'] == state: return self.opts['pointMode'] = state self.update()
[docs] def setPen(self, *args, **kargs): """ Sets the pen used to draw lines between points. The argument can be a :class:`QtGui.QPen` or any combination of arguments accepted by :func:`pyqtgraph.mkPen() <pyqtgraph.mkPen>`. """ pen = fn.mkPen(*args, **kargs) self.opts['pen'] = pen #self.curve.setPen(pen) #for c in self.curves: #c.setPen(pen) #self.update() self.updateItems(styleUpdate=True)
[docs] def setShadowPen(self, *args, **kargs): """ Sets the shadow pen used to draw lines between points (this is for enhancing contrast or emphasizing data). This line is drawn behind the primary pen and should generally be assigned greater width than the primary pen. The argument can be a :class:`QtGui.QPen` or any combination of arguments accepted by :func:`pyqtgraph.mkPen() <pyqtgraph.mkPen>`. """ if args[0] is None: pen = None else: pen = fn.mkPen(*args, **kargs) self.opts['shadowPen'] = pen #for c in self.curves: #c.setPen(pen) #self.update() self.updateItems(styleUpdate=True)
[docs] def setFillBrush(self, *args, **kargs): """ Sets the :class:`QtGui.QBrush` used to fill the area under the curve. See :func:`mkBrush() <pyqtgraph.functions.mkBrush>`) for arguments. """ if args[0] is None: brush = None else: brush = fn.mkBrush(*args, **kargs) if self.opts['fillBrush'] == brush: return self.opts['fillBrush'] = brush self.updateItems(styleUpdate=True)
[docs] def setBrush(self, *args, **kargs): """ See :func:`setFillBrush() <pyqtgraph.PlotdataItem.setFillBrush()`. """ return self.setFillBrush(*args, **kargs)
[docs] def setFillLevel(self, level): """ Enables filling the area under the curve towards the value specified by `level`. `None` disables the filling. """ if self.opts['fillLevel'] == level: return self.opts['fillLevel'] = level self.updateItems(styleUpdate=True)
[docs] def setSymbol(self, symbol): """ `symbol` can be any string recognized by :class:`ScatterPlotItem <pyqtgraph.ScatterPlotItem>` or a list that specifies a symbol for each point. """ if self.opts['symbol'] == symbol: return self.opts['symbol'] = symbol #self.scatter.setSymbol(symbol) self.updateItems(styleUpdate=True)
[docs] def setSymbolPen(self, *args, **kargs): """ Sets the :class:`QtGui.QPen` used to draw symbol outlines. See :func:`mkPen() <pyqtgraph.functions.mkPen>`) for arguments. """ pen = fn.mkPen(*args, **kargs) if self.opts['symbolPen'] == pen: return self.opts['symbolPen'] = pen #self.scatter.setSymbolPen(pen) self.updateItems(styleUpdate=True)
[docs] def setSymbolBrush(self, *args, **kargs): """ Sets the :class:`QtGui.QBrush` used to fill symbols. See :func:`mkBrush() <pyqtgraph.functions.mkBrush>`) for arguments. """ brush = fn.mkBrush(*args, **kargs) if self.opts['symbolBrush'] == brush: return self.opts['symbolBrush'] = brush #self.scatter.setSymbolBrush(brush) self.updateItems(styleUpdate=True)
[docs] def setSymbolSize(self, size): """ Sets the symbol size. """ if self.opts['symbolSize'] == size: return self.opts['symbolSize'] = size #self.scatter.setSymbolSize(symbolSize) self.updateItems(styleUpdate=True)
[docs] def setDownsampling(self, ds=None, auto=None, method=None): """ Sets the downsampling mode of this item. Downsampling reduces the number of samples drawn to increase performance. ============== ================================================================= **Arguments:** ds (int) Reduce visible plot samples by this factor. To disable, set ds=1. auto (bool) If True, automatically pick *ds* based on visible range mode 'subsample': Downsample by taking the first of N samples. This method is fastest and least accurate. 'mean': Downsample by taking the mean of N samples. 'peak': Downsample by drawing a saw wave that follows the min and max of the original data. This method produces the best visual representation of the data but is slower. ============== ================================================================= """ changed = False if ds is not None: if self.opts['downsample'] != ds: changed = True self.opts['downsample'] = ds if auto is not None and self.opts['autoDownsample'] != auto: self.opts['autoDownsample'] = auto changed = True if method is not None: if self.opts['downsampleMethod'] != method: changed = True self.opts['downsampleMethod'] = method if changed: self._datasetMapped = None # invalidata mapped data self._datasetDisplay = None # invalidate display data self.updateItems(styleUpdate=False)
[docs] def setClipToView(self, state): """ ``state=True`` enables clipping the displayed data set to the visible x-axis range. """ if self.opts['clipToView'] == state: return self.opts['clipToView'] = state self._datasetDisplay = None # invalidate display data self.updateItems(styleUpdate=False)
[docs] def setDynamicRangeLimit(self, limit=1e06, hysteresis=3.): """ Limit the off-screen positions of data points at large magnification This avoids errors with plots not displaying because their visibility is incorrectly determined. The default setting repositions far-off points to be within ±10^6 times the viewport height. =============== ================================================================ **Arguments:** limit (float or None) Any data outside the range of limit * hysteresis will be constrained to the limit value limit. All values are relative to the viewport height. 'None' disables the check for a minimal increase in performance. Default is 1E+06. hysteresis (float) Hysteresis factor that controls how much change in zoom level (vertical height) is allowed before recalculating Default is 3.0 =============== ================================================================ """ if hysteresis < 1.0: hysteresis = 1.0 self.opts['dynamicRangeHyst'] = hysteresis if limit == self.opts['dynamicRangeLimit']: return # avoid update if there is no change self.opts['dynamicRangeLimit'] = limit # can be None self._datasetDisplay = None # invalidate display data self.updateItems(styleUpdate=False)
[docs] def setSkipFiniteCheck(self, skipFiniteCheck): """ When it is known that the plot data passed to ``PlotDataItem`` contains only finite numerical values, the ``skipFiniteCheck`` property can help speed up plotting. If this flag is set and the data contains any non-finite values (such as `NaN` or `Inf`), unpredictable behavior will occur. The data might not be plotted, or there migth be significant performance impact. In the default 'auto' connect mode, ``PlotDataItem`` will apply this setting automatically. """ self.opts['skipFiniteCheck'] = bool(skipFiniteCheck)
[docs] def setData(self, *args, **kargs): """ Clear any data displayed by this item and display new data. See :func:`__init__() <pyqtgraph.PlotDataItem.__init__>` for details; it accepts the same arguments. """ #self.clear() if kargs.get("stepMode", None) is True: warnings.warn( 'stepMode=True is deprecated and will result in an error after October 2022. Use stepMode="center" instead.', DeprecationWarning, stacklevel=3 ) if 'decimate' in kargs.keys(): warnings.warn( 'The decimate keyword has been deprecated. It has no effect and may result in an error in releases after October 2022. ', DeprecationWarning, stacklevel=2 ) if 'identical' in kargs.keys(): warnings.warn( 'The identical keyword has been deprecated. It has no effect may result in an error in releases after October 2022. ', DeprecationWarning, stacklevel=2 ) profiler = debug.Profiler() y = None x = None if len(args) == 1: data = args[0] dt = dataType(data) if dt == 'empty': pass elif dt == 'listOfValues': y = np.array(data) elif dt == 'Nx2array': x = data[:,0] y = data[:,1] elif dt == 'recarray' or dt == 'dictOfLists': if 'x' in data: x = np.array(data['x']) if 'y' in data: y = np.array(data['y']) elif dt == 'listOfDicts': if 'x' in data[0]: x = np.array([d.get('x',None) for d in data]) if 'y' in data[0]: y = np.array([d.get('y',None) for d in data]) for k in ['data', 'symbolSize', 'symbolPen', 'symbolBrush', 'symbolShape']: if k in data: kargs[k] = [d.get(k, None) for d in data] elif dt == 'MetaArray': y = data.view(np.ndarray) x = data.xvals(0).view(np.ndarray) else: raise Exception('Invalid data type %s' % type(data)) elif len(args) == 2: seq = ('listOfValues', 'MetaArray', 'empty') dtyp = dataType(args[0]), dataType(args[1]) if dtyp[0] not in seq or dtyp[1] not in seq: raise Exception('When passing two unnamed arguments, both must be a list or array of values. (got %s, %s)' % (str(type(args[0])), str(type(args[1])))) if not isinstance(args[0], np.ndarray): #x = np.array(args[0]) if dtyp[0] == 'MetaArray': x = args[0].asarray() else: x = np.array(args[0]) else: x = args[0].view(np.ndarray) if not isinstance(args[1], np.ndarray): #y = np.array(args[1]) if dtyp[1] == 'MetaArray': y = args[1].asarray() else: y = np.array(args[1]) else: y = args[1].view(np.ndarray) if 'x' in kargs: x = kargs['x'] if dataType(x) == 'MetaArray': x = x.asarray() if 'y' in kargs: y = kargs['y'] if dataType(y) == 'MetaArray': y = y.asarray() profiler('interpret data') ## pull in all style arguments. ## Use self.opts to fill in anything not present in kargs. if 'name' in kargs: self.opts['name'] = kargs['name'] self.setProperty('styleWasChanged', True) if 'connect' in kargs: self.opts['connect'] = kargs['connect'] self.setProperty('styleWasChanged', True) if 'skipFiniteCheck' in kargs: self.opts['skipFiniteCheck'] = kargs['skipFiniteCheck'] ## if symbol pen/brush are given with no previously set symbol, then assume symbol is 'o' if 'symbol' not in kargs and ('symbolPen' in kargs or 'symbolBrush' in kargs or 'symbolSize' in kargs): if self.opts['symbol'] is None: kargs['symbol'] = 'o' if 'brush' in kargs: kargs['fillBrush'] = kargs['brush'] for k in list(self.opts.keys()): if k in kargs: self.opts[k] = kargs[k] self.setProperty('styleWasChanged', True) #curveArgs = {} #for k in ['pen', 'shadowPen', 'fillLevel', 'brush']: #if k in kargs: #self.opts[k] = kargs[k] #curveArgs[k] = self.opts[k] #scatterArgs = {} #for k,v in [('symbolPen','pen'), ('symbolBrush','brush'), ('symbol','symbol')]: #if k in kargs: #self.opts[k] = kargs[k] #scatterArgs[v] = self.opts[k] if y is None or len(y) == 0: # empty data is represented as None yData = None else: # actual data is represented by ndarray if not isinstance(y, np.ndarray): y = np.array(y) yData = y.view(np.ndarray) if x is None: x = np.arange(len(y)) if x is None or len(x)==0: # empty data is represented as None xData = None else: # actual data is represented by ndarray if not isinstance(x, np.ndarray): x = np.array(x) xData = x.view(np.ndarray) # one last check to make sure there are no MetaArrays getting by if xData is None or yData is None: self._dataset = None else: self._dataset = PlotDataset( xData, yData ) self._datasetMapped = None # invalidata mapped data , will be generated in getData() / getDisplayDataset() self._datasetDisplay = None # invalidate display data, will be generated in getData() / getDisplayDataset() profiler('set data') self.updateItems( styleUpdate = self.property('styleWasChanged') ) self.setProperty('styleWasChanged', False) # items have been updated profiler('update items') self.informViewBoundsChanged() self.sigPlotChanged.emit(self) profiler('emit')
def updateItems(self, styleUpdate=True): # override styleUpdate request and always enforce update until we have a better solution for # - ScatterPlotItem losing per-point style information # - PlotDataItem performing multiple unnecessary setData calls on initialization styleUpdate=True curveArgs = {} scatterArgs = {} if styleUpdate: # repeat style arguments only when changed for k, v in [ ('pen','pen'), ('shadowPen','shadowPen'), ('fillLevel','fillLevel'), ('fillOutline', 'fillOutline'), ('fillBrush', 'brush'), ('antialias', 'antialias'), ('connect', 'connect'), ('stepMode', 'stepMode'), ('skipFiniteCheck', 'skipFiniteCheck') ]: if k in self.opts: curveArgs[v] = self.opts[k] for k, v in [ ('symbolPen','pen'), ('symbolBrush','brush'), ('symbol','symbol'), ('symbolSize', 'size'), ('data', 'data'), ('pxMode', 'pxMode'), ('antialias', 'antialias') ]: if k in self.opts: scatterArgs[v] = self.opts[k] dataset = self.getDisplayDataset() if dataset is None: # then we have nothing to show self.curve.hide() self.scatter.hide() return x = dataset.x y = dataset.y #scatterArgs['mask'] = self.dataMask if( self.opts['pen'] is not None or (self.opts['fillBrush'] is not None and self.opts['fillLevel'] is not None) ): # draw if visible... # auto-switch to indicate non-finite values as interruptions in the curve: if isinstance(curveArgs['connect'], str) and curveArgs['connect'] == 'auto': # connect can also take a boolean array if dataset.containsNonfinite is None: curveArgs['connect'] = 'all' # this is faster, but silently connects the curve across any non-finite values else: if dataset.containsNonfinite: curveArgs['connect'] = 'finite' else: curveArgs['connect'] = 'all' # all points can be connected, and no further check is needed. curveArgs['skipFiniteCheck'] = True self.curve.setData(x=x, y=y, **curveArgs) self.curve.show() else: # ...hide if not. self.curve.hide() if self.opts['symbol'] is not None: # draw if visible... ## check against `True` too for backwards compatibility if self.opts.get('stepMode', False) in ("center", True): x = 0.5 * (x[:-1] + x[1:]) self.scatter.setData(x=x, y=y, **scatterArgs) self.scatter.show() else: # ...hide if not. self.scatter.hide()
[docs] def getOriginalDataset(self): """ Returns the original, unmapped data as the tuple (`xData`, `yData`). """ dataset = self._dataset if dataset is None: return (None, None) return dataset.x, dataset.y
[docs] def getDisplayDataset(self): """ Returns a :class:`PlotDataset <pyqtgraph.PlotDataset>` object that contains data suitable for display (after mapping and data reduction) as ``dataset.x`` and ``dataset.y``. Intended for internal use. """ if self._dataset is None: return None # Return cached processed dataset if available and still valid: if( self._datasetDisplay is not None and not (self.property('xViewRangeWasChanged') and self.opts['clipToView']) and not (self.property('xViewRangeWasChanged') and self.opts['autoDownsample']) and not (self.property('yViewRangeWasChanged') and self.opts['dynamicRangeLimit'] is not None) ): return self._datasetDisplay # Apply data mapping functions if mapped dataset is not yet available: if self._datasetMapped is None: x = self._dataset.x y = self._dataset.y if y.dtype == bool: y = y.astype(np.uint8) if x.dtype == bool: x = x.astype(np.uint8) if self.opts['fftMode']: x,y = self._fourierTransform(x, y) # Ignore the first bin for fft data if we have a logx scale if self.opts['logMode'][0]: x=x[1:] y=y[1:] if self.opts['derivativeMode']: # plot dV/dt y = np.diff(self._dataset.y)/np.diff(self._dataset.x) x = x[:-1] if self.opts['phasemapMode']: # plot dV/dt vs V x = self._dataset.y[:-1] y = np.diff(self._dataset.y)/np.diff(self._dataset.x) dataset = PlotDataset(x,y) dataset.containsNonfinite = self._dataset.containsNonfinite if True in self.opts['logMode']: dataset.applyLogMapping( self.opts['logMode'] ) # Apply log scaling for x and/or y axis self._datasetMapped = dataset # apply processing that affects the on-screen display of data: x = self._datasetMapped.x y = self._datasetMapped.y containsNonfinite = self._datasetMapped.containsNonfinite view = self.getViewBox() if view is None: view_range = None else: view_range = view.viewRect() # this is always up-to-date if view_range is None: view_range = self.viewRect() ds = self.opts['downsample'] if not isinstance(ds, int): ds = 1 if self.opts['autoDownsample']: # this option presumes that x-values have uniform spacing if view_range is not None and len(x) > 1: dx = float(x[-1]-x[0]) / (len(x)-1) if dx != 0.0: x0 = (view_range.left()-x[0]) / dx x1 = (view_range.right()-x[0]) / dx width = self.getViewBox().width() if width != 0.0: ds = int(max(1, int((x1-x0) / (width*self.opts['autoDownsampleFactor'])))) ## downsampling is expensive; delay until after clipping. if self.opts['clipToView']: if view is None or view.autoRangeEnabled()[0]: pass # no ViewBox to clip to, or view will autoscale to data range. else: # clip-to-view always presumes that x-values are in increasing order if view_range is not None and len(x) > 1: # find first in-view value (left edge) and first out-of-view value (right edge) # since we want the curve to go to the edge of the screen, we need to preserve # one down-sampled point on the left and one of the right, so we extend the interval x0 = np.searchsorted(x, view_range.left()) - ds x0 = fn.clip_scalar(x0, 0, len(x)) # workaround # x0 = np.clip(x0, 0, len(x)) x1 = np.searchsorted(x, view_range.right()) + ds x1 = fn.clip_scalar(x1, x0, len(x)) # x1 = np.clip(x1, 0, len(x)) x = x[x0:x1] y = y[x0:x1] if ds > 1: if self.opts['downsampleMethod'] == 'subsample': x = x[::ds] y = y[::ds] elif self.opts['downsampleMethod'] == 'mean': n = len(x) // ds stx = ds//2 # start of x-values; try to select a somewhat centered point x = x[stx:stx+n*ds:ds] y = y[:n*ds].reshape(n,ds).mean(axis=1) elif self.opts['downsampleMethod'] == 'peak': n = len(x) // ds x1 = np.empty((n,2)) stx = ds//2 # start of x-values; try to select a somewhat centered point x1[:] = x[stx:stx+n*ds:ds,np.newaxis] x = x1.reshape(n*2) y1 = np.empty((n,2)) y2 = y[:n*ds].reshape((n, ds)) y1[:,0] = y2.max(axis=1) y1[:,1] = y2.min(axis=1) y = y1.reshape(n*2) if self.opts['dynamicRangeLimit'] is not None: if view_range is not None: data_range = self._datasetMapped.dataRect() if data_range is not None: view_height = view_range.height() limit = self.opts['dynamicRangeLimit'] hyst = self.opts['dynamicRangeHyst'] # never clip data if it fits into +/- (extended) limit * view height if ( # note that "bottom" is the larger number, and "top" is the smaller one. view_height > 0 # never clip if the view does not show anything and would cause division by zero and not data_range.bottom() < view_range.top() # never clip if all data is too small to see and not data_range.top() > view_range.bottom() # never clip if all data is too large to see and data_range.height() > 2 * hyst * limit * view_height ): cache_is_good = False # check if cached display data can be reused: if self._datasetDisplay is not None: # top is minimum value, bottom is maximum value # how many multiples of the current view height does the clipped plot extend to the top and bottom? top_exc =-(self._drlLastClip[0]-view_range.bottom()) / view_height bot_exc = (self._drlLastClip[1]-view_range.top() ) / view_height # print(top_exc, bot_exc, hyst) if ( top_exc >= limit / hyst and top_exc <= limit * hyst and bot_exc >= limit / hyst and bot_exc <= limit * hyst ): # restore cached values x = self._datasetDisplay.x y = self._datasetDisplay.y cache_is_good = True if not cache_is_good: min_val = view_range.bottom() - limit * view_height max_val = view_range.top() + limit * view_height # print('alloc:', end='') # workaround for slowdown from numpy deprecation issues in 1.17 to 1.20+ : # y = np.clip(y, a_min=min_val, a_max=max_val) y = fn.clip_array(y, min_val, max_val) self._drlLastClip = (min_val, max_val) self._datasetDisplay = PlotDataset( x,y ) self._datasetDisplay.containsNonfinite = containsNonfinite self.setProperty('xViewRangeWasChanged', False) self.setProperty('yViewRangeWasChanged', False) return self._datasetDisplay
[docs] def getData(self): """ Returns the displayed data as the tuple (`xData`, `yData`) after mapping and data reduction. """ dataset = self.getDisplayDataset() if dataset is None: return (None, None) return dataset.x, dataset.y
# compatbility method for access to dataRect for full dataset:
[docs] def dataRect(self): """ Returns a bounding rectangle (as :class:`QtGui.QRectF`) for the full set of data. Will return `None` if there is no data or if all values (x or y) are NaN. """ if self._dataset is None: return None return self._dataset.dataRect()
[docs] def dataBounds(self, ax, frac=1.0, orthoRange=None): """ Returns the range occupied by the data (along a specific axis) in this item. This method is called by :class:`ViewBox` when auto-scaling. =============== ==================================================================== **Arguments:** ax (0 or 1) the axis for which to return this item's data range frac (float 0.0-1.0) Specifies what fraction of the total data range to return. By default, the entire range is returned. This allows the :class:`ViewBox` to ignore large spikes in the data when auto-scaling. orthoRange ([min,max] or None) Specifies that only the data within the given range (orthogonal to *ax*) should me measured when returning the data range. (For example, a ViewBox might ask what is the y-range of all data with x-values between min and max) =============== ==================================================================== """ range = [None, None] if self.curve.isVisible(): range = self.curve.dataBounds(ax, frac, orthoRange) elif self.scatter.isVisible(): r2 = self.scatter.dataBounds(ax, frac, orthoRange) range = [ r2[0] if range[0] is None else (range[0] if r2[0] is None else min(r2[0], range[0])), r2[1] if range[1] is None else (range[1] if r2[1] is None else min(r2[1], range[1])) ] return range
[docs] def pixelPadding(self): """ Returns the size in pixels that this item may draw beyond the values returned by dataBounds(). This method is called by :class:`ViewBox` when auto-scaling. """ pad = 0 if self.curve.isVisible(): pad = max(pad, self.curve.pixelPadding()) elif self.scatter.isVisible(): pad = max(pad, self.scatter.pixelPadding()) return pad
def clear(self): self._dataset = None self._datasetMapped = None self._datasetDisplay = None self.curve.clear() self.scatter.clear() def appendData(self, *args, **kargs): pass def curveClicked(self, curve, ev): self.sigClicked.emit(self, ev) def scatterClicked(self, plt, points, ev): self.sigClicked.emit(self, ev) self.sigPointsClicked.emit(self, points, ev) def scatterHovered(self, plt, points, ev): self.sigPointsHovered.emit(self, points, ev) # def viewTransformChanged(self): # """ view transform (and thus range) has changed, replot if needed """ # viewTransformChanged is only called when the cached viewRect of GraphicsItem # has already been invalidated. However, responding here will make PlotDataItem # update curve and scatter later than intended. # super().viewTransformChanged() # this invalidates the viewRect() cache! def viewRangeChanged(self, vb=None, ranges=None, changed=None): # view range has changed; re-plot if needed update_needed = False if changed is None or changed[0]: # if ranges is not None: # print('hor:', ranges[0]) self.setProperty('xViewRangeWasChanged', True) if( self.opts['clipToView'] or self.opts['autoDownsample'] ): self._datasetDisplay = None update_needed = True if changed is None or changed[1]: # if ranges is not None: # print('ver:', ranges[1]) self.setProperty('yViewRangeWasChanged', True) if self.opts['dynamicRangeLimit'] is not None: # update, but do not discard cached display data update_needed = True if update_needed: self.updateItems(styleUpdate=False) def _fourierTransform(self, x, y): ## Perform Fourier transform. If x values are not sampled uniformly, ## then use np.interp to resample before taking fft. dx = np.diff(x) uniform = not np.any(np.abs(dx-dx[0]) > (abs(dx[0]) / 1000.)) if not uniform: x2 = np.linspace(x[0], x[-1], len(x)) y = np.interp(x2, x, y) x = x2 n = y.size f = np.fft.rfft(y) / n d = float(x[-1]-x[0]) / (len(x)-1) x = np.fft.rfftfreq(n, d) y = np.abs(f) return x, y
# helper functions: def dataType(obj): if hasattr(obj, '__len__') and len(obj) == 0: return 'empty' if isinstance(obj, dict): return 'dictOfLists' elif isSequence(obj): first = obj[0] if (hasattr(obj, 'implements') and obj.implements('MetaArray')): return 'MetaArray' elif isinstance(obj, np.ndarray): if obj.ndim == 1: if obj.dtype.names is None: return 'listOfValues' else: return 'recarray' elif obj.ndim == 2 and obj.dtype.names is None and obj.shape[1] == 2: return 'Nx2array' else: raise Exception('array shape must be (N,) or (N,2); got %s instead' % str(obj.shape)) elif isinstance(first, dict): return 'listOfDicts' else: return 'listOfValues' def isSequence(obj): return hasattr(obj, '__iter__') or isinstance(obj, np.ndarray) or (hasattr(obj, 'implements') and obj.implements('MetaArray'))