Source code for pyqtgraph.graphicsItems.ImageItem

import warnings
from import Callable

import numpy

from .. import colormap
from .. import debug as debug
from .. import functions as fn
from .. import functions_qimage
from .. import getConfigOption
from ..Point import Point
from ..Qt import QtCore, QtGui, QtWidgets
from ..util.cupy_helper import getCupy
from .GraphicsObject import GraphicsObject

translate = QtCore.QCoreApplication.translate

__all__ = ['ImageItem']

[docs] class ImageItem(GraphicsObject): """ **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>` """ # Overall description of ImageItem (including examples) moved to documentation text sigImageChanged = QtCore.Signal() sigRemoveRequested = QtCore.Signal(object) # self; emitted when 'remove' is selected from context menu
[docs] def __init__(self, image=None, **kargs): """ See :func:`~pyqtgraph.ImageItem.setOpts` for further keyword arguments and and :func:`~pyqtgraph.ImageItem.setImage` for information on supported formats. Parameters ---------- image: np.ndarray, optional Image data """ GraphicsObject.__init__(self) = None self.image = None ## original image data self.qimage = None ## rendered image for display self.paintMode = None self.levels = None ## [min, max] or [[redMin, redMax], ...] self.lut = None self.autoDownsample = False self._colorMap = None # This is only set if a color map is assigned directly self._lastDownsample = (1, 1) self._processingBuffer = None self._displayBuffer = None self._renderRequired = True self._unrenderable = False self._xp = None # either numpy or cupy, to match the image data self._defferedLevels = None self._imageHasNans = None # None : not yet known self.axisOrder = getConfigOption('imageAxisOrder') self._dataTransform = self._inverseDataTransform = None self._update_data_transforms( self.axisOrder ) # install initial transforms self.drawKernel = None self.border = None self.removable = False if image is not None: self.setImage(image, **kargs) else: self.setOpts(**kargs)
[docs] def setCompositionMode(self, mode): """ Change the composition mode of the item. This is useful when overlaying multiple items. Parameters ---------- mode : ``QtGui.QPainter.CompositionMode`` Composition of the item, often used when overlaying items. Common options include: ``QPainter.CompositionMode.CompositionMode_SourceOver`` (Default) Image replaces the background if it is opaque. Otherwise, it uses the alpha channel to blend the image with the background. ``QPainter.CompositionMode.CompositionMode_Overlay`` Image color is mixed with the background color to reflect the lightness or darkness of the background ``QPainter.CompositionMode.CompositionMode_Plus`` Both the alpha and color of the image and background pixels are added together. ``QPainter.CompositionMode.CompositionMode_Plus`` The output is the image color multiplied by the background. See ``QPainter::CompositionMode`` in the Qt Documentation for more options and details """ self.paintMode = mode self.update()
[docs] def setBorder(self, b): """ Defines the border drawn around the image. Accepts all arguments supported by :func:`~pyqtgraph.mkPen`. """ self.border = fn.mkPen(b) self.update()
def width(self): if self.image is None: return None axis = 0 if self.axisOrder == 'col-major' else 1 return self.image.shape[axis] def height(self): if self.image is None: return None axis = 1 if self.axisOrder == 'col-major' else 0 return self.image.shape[axis] def channels(self): if self.image is None: return None return self.image.shape[2] if self.image.ndim == 3 else 1 def boundingRect(self): if self.image is None: return QtCore.QRectF(0., 0., 0., 0.) return QtCore.QRectF(0., 0., float(self.width()), float(self.height()))
[docs] def setLevels(self, levels, update=True): """ Sets image scaling levels. See :func:`makeARGB <pyqtgraph.makeARGB>` for more details on how levels are applied. Parameters ---------- levels: array_like - ``[blackLevel, whiteLevel]`` sets black and white levels for monochrome data and can be used with a lookup table. - ``[[minR, maxR], [minG, maxG], [minB, maxB]]`` sets individual scaling for RGB values. Not compatible with lookup tables. update: bool, optional Controls if image immediately updates to reflect the new levels. """ if self._xp is None: self.levels = levels self._defferedLevels = levels return if levels is not None: levels = self._xp.asarray(levels) self.levels = levels if update: self.updateImage()
[docs] def getLevels(self): """ Returns the list representing the current level settings. See :func:`~setLevels`. When ``autoLevels`` is active, the format is ``[blackLevel, whiteLevel]``. """ return self.levels
[docs] def setColorMap(self, colorMap): """ Sets a color map for false color display of a monochrome image. Parameters ---------- colorMap : :class:`~pyqtgraph.ColorMap` or `str` A string argument will be passed to :func:`colormap.get() <pyqtgraph.colormap.get>` """ if isinstance(colorMap, colormap.ColorMap): self._colorMap = colorMap elif isinstance(colorMap, str): self._colorMap = colormap.get(colorMap) else: raise TypeError("'colorMap' argument must be ColorMap or string") self.setLookupTable( self._colorMap.getLookupTable(nPts=256) )
[docs] def getColorMap(self): """ Returns the assigned :class:`pyqtgraph.ColorMap`, or `None` if not available """ return self._colorMap
[docs] def setLookupTable(self, lut, update=True): """ Sets lookup table ``lut`` to use for false color display of a monochrome image. See :func:`makeARGB <pyqtgraph.makeARGB>` for more information on how this is used. Optionally, `lut` can be a callable that accepts the current image as an argument and returns the lookup table to use. Ordinarily, this table is supplied by a :class:`~pyqtgraph.HistogramLUTItem`, :class:`~pyqtgraph.GradientEditorItem` or :class:`~pyqtgraph.ColorBarItem`. Setting ``update = False`` avoids an immediate image update. """ if lut is not self.lut: if self._xp is not None: lut = self._ensure_proper_substrate(lut, self._xp) self.lut = lut if update: self.updateImage()
@staticmethod def _ensure_proper_substrate(data, substrate): if data is None or isinstance(data, Callable) or isinstance(data, substrate.ndarray): return data cupy = getCupy() if substrate == cupy and not isinstance(data, cupy.ndarray): data = cupy.asarray(data) elif substrate == numpy: if cupy is not None and isinstance(data, cupy.ndarray): data = data.get() else: data = numpy.asarray(data) return data
[docs] def setAutoDownsample(self, active=True): """ Controls automatic downsampling for this ImageItem. If `active` is `True`, the image is automatically downsampled to match the screen resolution. This improves performance for large images and reduces aliasing. If `autoDownsample` is not specified, then ImageItem will choose whether to downsample the image based on its size. `False` disables automatic downsampling. """ self.autoDownsample = active self._renderRequired = True self.update()
[docs] def setOpts(self, update=True, **kargs): """ Sets display and processing options for this ImageItem. :func:`~pyqtgraph.ImageItem.__init__` and :func:`~pyqtgraph.ImageItem.setImage` support all keyword arguments listed here. Parameters ---------- autoDownsample: bool See :func:`~pyqtgraph.ImageItem.setAutoDownsample`. axisOrder: str | `'col-major'`: The shape of the array represents (width, height) of the image. This is the default. | `'row-major'`: The shape of the array represents (height, width). border: bool Sets a pen to draw to draw an image border. See :func:`~pyqtgraph.ImageItem.setBorder`. compositionMode: See :func:`~pyqtgraph.ImageItem.setCompositionMode` colorMap: :class:`~pyqtgraph.ColorMap` or `str` Sets a color map. A string will be passed to :func:`colormap.get() <pyqtgraph.colormap.get()>` lut: array_like Sets a color lookup table to use when displaying the image. See :func:`~pyqtgraph.ImageItem.setLookupTable`. levels: array_like Shape of (min, max). Sets minimum and maximum values to use when rescaling the image data. By default, these will be set to the estimated minimum and maximum values in the image. If the image array has dtype uint8, no rescaling is necessary. See :func:`~pyqtgraph.ImageItem.setLevels`. opacity: float Overall opacity for an RGB image. Between 0.0-1.0. rect: :class:`QRectF`, :class:`QRect` or array_like Displays the current image within the specified rectangle in plot coordinates. If ``array_like``, should be of the of ``floats (`x`,`y`,`w`,`h`)`` . See :func:`~pyqtgraph.ImageItem.setRect`. update : bool, optional Controls if image immediately updates to reflect the new options. """ if 'axisOrder' in kargs: val = kargs['axisOrder'] if val not in ('row-major', 'col-major'): raise ValueError("axisOrder must be either 'row-major' or 'col-major'") self.axisOrder = val self._update_data_transforms(self.axisOrder) # update cached transforms if 'colorMap' in kargs: self.setColorMap(kargs['colorMap']) if 'lut' in kargs: self.setLookupTable(kargs['lut'], update=update) if 'levels' in kargs: self.setLevels(kargs['levels'], update=update) #if 'clipLevel' in kargs: #self.setClipLevel(kargs['clipLevel']) if 'opacity' in kargs: self.setOpacity(kargs['opacity']) if 'compositionMode' in kargs: self.setCompositionMode(kargs['compositionMode']) if 'border' in kargs: self.setBorder(kargs['border']) if 'removable' in kargs: self.removable = kargs['removable'] = None if 'autoDownsample' in kargs: self.setAutoDownsample(kargs['autoDownsample']) if 'rect' in kargs: self.setRect(kargs['rect']) if update: self.update()
[docs] def setRect(self, *args): """ setRect(rect) or setRect(x,y,w,h) Sets translation and scaling of this ImageItem to display the current image within the rectangle given as ``rect`` (:class:`QtCore.QRect` or :class:`QtCore.QRectF`), or described by parameters `x, y, w, h`, defining starting position, width and height. This method cannot be used before an image is assigned. See the :ref:`examples <ImageItem_examples>` for how to manually set transformations. """ if len(args) == 0: self.resetTransform() # reset scaling and rotation when called without argument return if isinstance(args[0], (QtCore.QRectF, QtCore.QRect)): rect = args[0] # use QRectF or QRect directly else: if hasattr(args[0],'__len__'): args = args[0] # promote tuple or list of values rect = QtCore.QRectF( *args ) # QRectF(x,y,w,h), but also accepts other initializers tr = QtGui.QTransform() tr.translate(rect.left(), tr.scale(rect.width() / self.width(), rect.height() / self.height()) self.setTransform(tr)
[docs] def clear(self): """ Clears the assigned image. """ self.image = None self.prepareGeometryChange() self.informViewBoundsChanged() self.update()
def _buildQImageBuffer(self, shape): self._displayBuffer = numpy.empty(shape[:2] + (4,), dtype=numpy.ubyte) if self._xp == getCupy(): self._processingBuffer = self._xp.empty(shape[:2] + (4,), dtype=self._xp.ubyte) else: self._processingBuffer = self._displayBuffer self.qimage = None
[docs] def setImage(self, image=None, autoLevels=None, **kargs): """ Updates the image displayed by this ImageItem. For more information on how the image is processed before displaying, see :func:`~pyqtgraph.makeARGB`. For backward compatibility, image data is assumed to be in column-major order (column, row) by default. However, most data is stored in row-major order (row, column). It can either be transposed before assignment:: imageitem.setImage(imagedata.T) or the interpretation of the data can be changed locally through the ``axisOrder`` keyword or by changing the `imageAxisOrder` :ref:`global configuration option <apiref_config>` All keywords supported by :func:`~pyqtgraph.ImageItem.setOpts` are also allowed here. Parameters ---------- image: np.ndarray, optional Image data given as NumPy array with an integer or floating point dtype of any bit depth. A 2-dimensional array describes single-valued (monochromatic) data. A 3-dimensional array is used to give individual color components. The third dimension must be of length 3 (RGB) or 4 (RGBA). rect: QRectF or QRect or array_like, optional If given, sets translation and scaling to display the image within the specified rectangle. If ``array_like`` should be the form of floats ``[x, y, w, h]`` See :func:`~pyqtgraph.ImageItem.setRect` autoLevels: bool, optional If `True`, ImageItem will automatically select levels based on the maximum and minimum values encountered in the data. For performance reasons, this search subsamples the images and may miss individual bright or or dark points in the data set. If `False`, the search will be omitted. The default is `False` if a ``levels`` keyword argument is given, and `True` otherwise. levelSamples: int, default 65536 When determining minimum and maximum values, ImageItem only inspects a subset of pixels no larger than this number. Setting this larger than the total number of pixels considers all values. """ profile = debug.Profiler() gotNewData = False if image is None: if self.image is None: return else: old_xp = self._xp cp = getCupy() self._xp = cp.get_array_module(image) if cp else numpy gotNewData = True processingSubstrateChanged = old_xp != self._xp if processingSubstrateChanged: self._processingBuffer = None shapeChanged = (processingSubstrateChanged or self.image is None or image.shape != self.image.shape) image = image.view() self.image = image self._imageHasNans = None if self.image.shape[0] > 2**15-1 or self.image.shape[1] > 2**15-1: if 'autoDownsample' not in kargs: kargs['autoDownsample'] = True if shapeChanged: self.prepareGeometryChange() self.informViewBoundsChanged() profile() if autoLevels is None: if 'levels' in kargs: autoLevels = False else: autoLevels = True if autoLevels: level_samples = kargs.pop('levelSamples', 2**16) mn, mx = self.quickMinMax( targetSize=level_samples ) # mn and mx can still be NaN if the data is all-NaN if mn == mx or self._xp.isnan(mn) or self._xp.isnan(mx): mn = 0 mx = 255 kargs['levels'] = [mn,mx] profile() self.setOpts(update=False, **kargs) profile() self._renderRequired = True self.update() profile() if gotNewData: self.sigImageChanged.emit() if self._defferedLevels is not None: levels = self._defferedLevels self._defferedLevels = None self.setLevels((levels))
def _update_data_transforms(self, axisOrder='col-major'): """ Sets up the transforms needed to map between input array and display """ self._dataTransform = QtGui.QTransform() self._inverseDataTransform = QtGui.QTransform() if self.axisOrder == 'row-major': # transpose both self._dataTransform.scale(1, -1) self._dataTransform.rotate(-90) self._inverseDataTransform.scale(1, -1) self._inverseDataTransform.rotate(-90) def dataTransform(self): """ Returns the transform that maps from this image's input array to its local coordinate system. This transform corrects for the transposition that occurs when image data is interpreted in row-major order. :meta private: """ # Might eventually need to account for downsampling / clipping here # transforms are updated in setOpts call. return self._dataTransform def inverseDataTransform(self): """Return the transform that maps from this image's local coordinate system to its input array. See dataTransform() for more information. :meta private: """ # transforms are updated in setOpts call. return self._inverseDataTransform def mapToData(self, obj): return def mapFromData(self, obj): return
[docs] def quickMinMax(self, targetSize=1e6): """ Estimates the min/max values of the image data by subsampling. Subsampling is performed at regular strides chosen to evaluate a number of samples equal to or less than `targetSize`. Returns (`min`, `max`). """ data = self.image if targetSize < 2: # keep at least two pixels targetSize = 2 while True: h, w = data.shape[:2] if h * w <= targetSize: break if h > w: data = data[::2, ::] # downsample first axis else: data = data[::, ::2] # downsample second axis return self._xp.nanmin(data), self._xp.nanmax(data)
def updateImage(self, *args, **kargs): ## used for re-rendering qimage from self.image. ## can we make any assumptions here that speed things up? ## dtype, range, size are all the same? defaults = { 'autoLevels': False, } defaults.update(kargs) return self.setImage(*args, **defaults) def render(self): # Convert data to QImage for display. self._unrenderable = True if self.image is None or self.image.size == 0: return # Request a lookup table if this image has only one channel if self.image.ndim == 2 or self.image.shape[2] == 1: self.lut = self._ensure_proper_substrate(self.lut, self._xp) if isinstance(self.lut, Callable): lut = self._ensure_proper_substrate(self.lut(self.image, 256), self._xp) else: lut = self.lut else: lut = None if self.autoDownsample: xds, yds = self._computeDownsampleFactors() if xds is None: return axes = [1, 0] if self.axisOrder == 'row-major' else [0, 1] image = fn.downsample(self.image, xds, axis=axes[0]) image = fn.downsample(image, yds, axis=axes[1]) self._lastDownsample = (xds, yds) # Check if downsampling reduced the image size to zero due to inf values. if image.size == 0: return else: image = self.image # Convert single-channel image to 2D array if image.ndim == 3 and image.shape[-1] == 1: image = image[..., 0] # Assume images are in column-major order for backward compatibility # (most images are in row-major order) if self.axisOrder == 'col-major': image = image.swapaxes(0, 1) levels = self.levels if self._imageHasNans is None: # awkward, but fastest numpy native nan evaluation self._imageHasNans = ( image.dtype.kind == 'f' and self._xp.isnan(image.min()) ) qimage = None if lut is not None and lut.dtype != self._xp.uint8: # Both _rescale_float_mono() and _try_combine_lut() assume that # lut is of type uint8. It is considered a usage error if that # is not the case. # However, the makeARGB() codepath has previously allowed such # a usage to work. Rather than fail outright, we delegate this # case to makeARGB(). warnings.warn( "Using non-uint8 LUTs is an undocumented accidental feature and may " "be removed at some point in the future. Please open an issue if you " "instead believe this to be worthy of protected inclusion in pyqtgraph.", DeprecationWarning, stacklevel=2) elif not self._imageHasNans: qimage = functions_qimage.try_make_qimage(image, levels=levels, lut=lut) if qimage is not None: self._processingBuffer = None self._displayBuffer = None self.qimage = qimage self._renderRequired = False self._unrenderable = False return if self._processingBuffer is None or self._processingBuffer.shape[:2] != image.shape[:2]: self._buildQImageBuffer(image.shape) fn.makeARGB(image, lut=lut, levels=levels, output=self._processingBuffer) if self._xp == getCupy(): self._processingBuffer.get(out=self._displayBuffer) self.qimage = fn.ndarray_to_qimage(self._displayBuffer, QtGui.QImage.Format.Format_ARGB32) self._renderRequired = False self._unrenderable = False def paint(self, p, *args): profile = debug.Profiler() if self.image is None: return if self._renderRequired: self.render() if self._unrenderable: return profile('render QImage') if self.paintMode is not None: p.setCompositionMode(self.paintMode) profile('set comp mode') shape = self.image.shape[:2] if self.axisOrder == 'col-major' else self.image.shape[:2][::-1] p.drawImage(QtCore.QRectF(0,0,*shape), self.qimage) profile('p.drawImage') if self.border is not None: p.setPen(self.border) p.drawRect(self.boundingRect())
[docs] def save(self, fileName, *args): """ Saves this image to file. Note that this saves the visible image (after scale/color changes), not the original data. """ if self._renderRequired: self.render(), *args)
[docs] def getHistogram(self, bins='auto', step='auto', perChannel=False, targetImageSize=200, targetHistogramSize=500, **kwds): """ Returns `x` and `y` arrays containing the histogram values for the current image. For an explanation of the return format, see :func:`numpy.histogram()`. The `step` argument causes pixels to be skipped when computing the histogram to save time. If `step` is 'auto', then a step is chosen such that the analyzed data has dimensions approximating `targetImageSize` for each axis. The `bins` argument and any extra keyword arguments are passed to :func:`numpy.histogram()`. If `bins` is `auto`, a bin number is automatically chosen based on the image characteristics: * Integer images will have approximately `targetHistogramSize` bins, with each bin having an integer width. * All other types will have `targetHistogramSize` bins. If `perChannel` is `True`, then a histogram is computed for each channel, and the output is a list of the results. """ # This method is also used when automatically computing levels. if self.image is None or self.image.size == 0: return None, None if step == 'auto': step = (max(1, int(self._xp.ceil(self.image.shape[0] / targetImageSize))), max(1, int(self._xp.ceil(self.image.shape[1] / targetImageSize)))) if self._xp.isscalar(step): step = (step, step) stepData = self.image[::step[0], ::step[1]] if isinstance(bins, str) and bins == 'auto': mn = self._xp.nanmin(stepData).item() mx = self._xp.nanmax(stepData).item() if mx == mn: # degenerate image, arange will fail mx += 1 if self._xp.isnan(mn) or self._xp.isnan(mx): # the data are all-nan return None, None if stepData.dtype.kind in "ui": # For integer data, we select the bins carefully to avoid aliasing step = int(self._xp.ceil((mx - mn) / 500.)) bins = [] if step > 0.0: bins = self._xp.arange(mn, mx + 1.01 * step, step, dtype=int) else: # for float data, let numpy select the bins. bins = self._xp.linspace(mn, mx, 500) if len(bins) == 0: bins = self._xp.asarray((mn, mx)) kwds['bins'] = bins cp = getCupy() if perChannel: hist = [] for i in range(stepData.shape[-1]): stepChan = stepData[..., i] stepChan = stepChan[self._xp.isfinite(stepChan)] h = self._xp.histogram(stepChan, **kwds) if cp: hist.append((cp.asnumpy(h[1][:-1]), cp.asnumpy(h[0]))) else: hist.append((h[1][:-1], h[0])) return hist else: stepData = stepData[self._xp.isfinite(stepData)] hist = self._xp.histogram(stepData, **kwds) if cp: return cp.asnumpy(hist[1][:-1]), cp.asnumpy(hist[0]) else: return hist[1][:-1], hist[0]
[docs] def setPxMode(self, b): """ Sets whether the item ignores transformations and draws directly to screen pixels. If `True`, the item will not inherit any scale or rotation transformations from its parent items, but its position will be transformed as usual. (see ``GraphicsItem::ItemIgnoresTransformations`` in the Qt documentation) """ self.setFlag(self.GraphicsItemFlag.ItemIgnoresTransformations, b)
def setScaledMode(self): self.setPxMode(False) def getPixmap(self): if self._renderRequired: self.render() if self._unrenderable: return None return QtGui.QPixmap.fromImage(self.qimage)
[docs] def pixelSize(self): """ Returns the scene-size of a single pixel in the image """ br = self.sceneBoundingRect() if self.image is None: return 1,1 return br.width()/self.width(), br.height()/self.height()
def viewTransformChanged(self): if self.autoDownsample: xds, yds = self._computeDownsampleFactors() if xds is None: self._renderRequired = True self._unrenderable = True return if (xds, yds) != self._lastDownsample: self._renderRequired = True self.update() def _computeDownsampleFactors(self): # reduce dimensions of image based on screen resolution o = self.mapToDevice(QtCore.QPointF(0, 0)) x = self.mapToDevice(QtCore.QPointF(1, 0)) y = self.mapToDevice(QtCore.QPointF(0, 1)) # scene may not be available yet if o is None: return None, None w = Point(x - o).length() h = Point(y - o).length() if w == 0 or h == 0: return None, None return max(1, int(1.0 / w)), max(1, int(1.0 / h)) def mouseDragEvent(self, ev): if ev.button() != QtCore.Qt.MouseButton.LeftButton: ev.ignore() return elif self.drawKernel is not None: ev.accept() self.drawAt(ev.pos(), ev) def mouseClickEvent(self, ev): if ev.button() == QtCore.Qt.MouseButton.RightButton: if self.raiseContextMenu(ev): ev.accept() if self.drawKernel is not None and ev.button() == QtCore.Qt.MouseButton.LeftButton: self.drawAt(ev.pos(), ev) def raiseContextMenu(self, ev): menu = self.getMenu() if menu is None: return False menu = self.scene().addParentContextMenus(self, menu, ev) pos = ev.screenPos() menu.popup(QtCore.QPoint(int(pos.x()), int(pos.y()))) return True def getMenu(self): if is None: if not self.removable: return None = QtWidgets.QMenu()"ImageItem", "Image")) remAct = QtGui.QAction(translate("ImageItem", "Remove image"), remAct.triggered.connect(self.removeClicked) = remAct return def hoverEvent(self, ev): if not ev.isExit() and self.drawKernel is not None and ev.acceptDrags(QtCore.Qt.MouseButton.LeftButton): ev.acceptClicks(QtCore.Qt.MouseButton.LeftButton) ## we don't use the click, but we also don't want anyone else to use it. ev.acceptClicks(QtCore.Qt.MouseButton.RightButton) elif not ev.isExit() and self.removable: ev.acceptClicks(QtCore.Qt.MouseButton.RightButton) ## accept context menu clicks def tabletEvent(self, ev): pass #print(ev.device()) #print(ev.pointerType()) #print(ev.pressure()) def drawAt(self, pos, ev=None): if self.axisOrder == "col-major": pos = [int(pos.x()), int(pos.y())] else: pos = [int(pos.y()), int(pos.x())] dk = self.drawKernel kc = self.drawKernelCenter sx = [0,dk.shape[0]] sy = [0,dk.shape[1]] tx = [pos[0] - kc[0], pos[0] - kc[0]+ dk.shape[0]] ty = [pos[1] - kc[1], pos[1] - kc[1]+ dk.shape[1]] for i in [0,1]: dx1 = -min(0, tx[i]) dx2 = min(0, self.image.shape[0]-tx[i]) tx[i] += dx1+dx2 sx[i] += dx1+dx2 dy1 = -min(0, ty[i]) dy2 = min(0, self.image.shape[1]-ty[i]) ty[i] += dy1+dy2 sy[i] += dy1+dy2 ts = (slice(tx[0],tx[1]), slice(ty[0],ty[1])) ss = (slice(sx[0],sx[1]), slice(sy[0],sy[1])) mask = self.drawMask src = dk if isinstance(self.drawMode, Callable): self.drawMode(dk, self.image, mask, ss, ts, ev) else: src = src[ss] if self.drawMode == 'set': if mask is not None: mask = mask[ss] self.image[ts] = self.image[ts] * (1-mask) + src * mask else: self.image[ts] = src elif self.drawMode == 'add': self.image[ts] += src else: raise Exception("Unknown draw mode '%s'" % self.drawMode) self.updateImage() def setDrawKernel(self, kernel=None, mask=None, center=(0,0), mode='set'): self.drawKernel = kernel self.drawKernelCenter = center self.drawMode = mode self.drawMask = mask def removeClicked(self): ## Send remove event only after we have exited the menu event handler self.removeTimer = QtCore.QTimer() self.removeTimer.timeout.connect(self.emitRemoveRequested) self.removeTimer.start(0) def emitRemoveRequested(self): self.removeTimer.timeout.disconnect(self.emitRemoveRequested) self.sigRemoveRequested.emit(self)