Source code for pyqtgraph.graphicsItems.AxisItem

import weakref
from math import ceil, floor, isfinite, log10, sqrt, frexp, floor

import numpy as np

from .. import debug as debug
from .. import functions as fn
from .. import getConfigOption
from ..Point import Point
from ..Qt import QtCore, QtGui, QtWidgets
from .GraphicsWidget import GraphicsWidget

__all__ = ['AxisItem']
[docs] class AxisItem(GraphicsWidget): """ GraphicsItem showing a single plot axis with ticks, values, and label. Can be configured to fit on any side of a plot, Can automatically synchronize its displayed scale with ViewBox items. Ticks can be extended to draw a grid. If maxTickLength is negative, ticks point into the plot. """
[docs] def __init__(self, orientation, pen=None, textPen=None, tickPen = None, linkView=None, parent=None, maxTickLength=-5, showValues=True, text='', units='', unitPrefix='', **args): """ =============== =============================================================== **Arguments:** orientation one of 'left', 'right', 'top', or 'bottom' maxTickLength (px) maximum length of ticks to draw. Negative values draw into the plot, positive values draw outward. linkView (ViewBox) causes the range of values displayed in the axis to be linked to the visible range of a ViewBox. showValues (bool) Whether to display values adjacent to ticks pen (QPen) Pen used when drawing axis and (by default) ticks textPen (QPen) Pen used when drawing tick labels. tickPen (QPen) Pen used when drawing ticks. text The text (excluding units) to display on the label for this axis. units The units for this axis. Units should generally be given without any scaling prefix (eg, 'V' instead of 'mV'). The scaling prefix will be automatically prepended based on the range of data displayed. args All extra keyword arguments become CSS style options for the <span> tag which will surround the axis label and units. =============== =============================================================== """ GraphicsWidget.__init__(self, parent) self.label = QtWidgets.QGraphicsTextItem(self) self.picture = None self.orientation = orientation if orientation not in ['left', 'right', 'top', 'bottom']: raise Exception("Orientation argument must be one of 'left', 'right', 'top', or 'bottom'.") if orientation in ['left', 'right']: self.label.setRotation(-90) hide_overlapping_labels = False # allow labels on vertical axis to extend above and below the length of the axis else: hide_overlapping_labels = True # stop labels on horizontal axis from overlapping so vertical axis labels have room self.style = { 'tickTextOffset': [5, 2], ## (horizontal, vertical) spacing between text and axis 'tickTextWidth': 30, ## space reserved for tick text 'tickTextHeight': 18, 'autoExpandTextSpace': True, ## automatically expand text space if needed 'autoReduceTextSpace': True, 'hideOverlappingLabels': hide_overlapping_labels, 'tickFont': None, 'stopAxisAtTick': (False, False), ## whether axis is drawn to edge of box or to last tick 'textFillLimits': [ ## how much of the axis to fill up with tick text, maximally. (0, 0.8), ## never fill more than 80% of the axis (2, 0.6), ## If we already have 2 ticks with text, fill no more than 60% of the axis (4, 0.4), ## If we already have 4 ticks with text, fill no more than 40% of the axis (6, 0.2), ## If we already have 6 ticks with text, fill no more than 20% of the axis ], 'showValues': showValues, 'tickLength': maxTickLength, 'maxTickLevel': 2, 'maxTextLevel': 2, 'tickAlpha': None, ## If not none, use this alpha for all ticks. } self.textWidth = 30 ## Keeps track of maximum width / height of tick text self.textHeight = 18 # If the user specifies a width / height, remember that setting # indefinitely. self.fixedWidth = None self.fixedHeight = None self.labelText = text self.labelUnits = units self.labelUnitPrefix = unitPrefix self.labelStyle = args self.logMode = False self._tickDensity = 1.0 # used to adjust scale the number of automatically generated ticks self._tickLevels = None # used to override the automatic ticking system with explicit ticks self._tickSpacing = None # used to override default tickSpacing method self.scale = 1.0 self.autoSIPrefix = True self.autoSIPrefixScale = 1.0 self.showLabel(False) self.setRange(0, 1) if pen is None: self.setPen() else: self.setPen(pen) if textPen is None: self.setTextPen() else: self.setTextPen(textPen) if tickPen is None: self.setTickPen() else: self.setTickPen(tickPen) self._linkedView = None if linkView is not None: self._linkToView_internal(linkView) self.grid = False
#self.setCacheMode(self.DeviceCoordinateCache)
[docs] def setStyle(self, **kwds): """ Set various style options. ===================== ======================================================= Keyword Arguments: tickLength (int) The maximum length of ticks in pixels. Positive values point toward the text; negative values point away. tickTextOffset (int) reserved spacing between text and axis in px tickTextWidth (int) Horizontal space reserved for tick text in px tickTextHeight (int) Vertical space reserved for tick text in px autoExpandTextSpace (bool) Automatically expand text space if the tick strings become too long. autoReduceTextSpace (bool) Automatically shrink the axis if necessary hideOverlappingLabels (bool or int) * *True* (default for horizontal axis): Hide tick labels which extend beyond the AxisItem's geometry rectangle. * *False* (default for vertical axis): Labels may be drawn extending beyond the extent of the axis. * *(int)* sets the tolerance limit for how many pixels a label is allowed to extend beyond the axis. Defaults to 15 for `hideOverlappingLabels = False`. tickFont (QFont or None) Determines the font used for tick values. Use None for the default font. stopAxisAtTick (tuple: (bool min, bool max)) If True, the axis line is drawn only as far as the last tick. Otherwise, the line is drawn to the edge of the AxisItem boundary. textFillLimits (list of (tick #, % fill) tuples). This structure determines how the AxisItem decides how many ticks should have text appear next to them. Each tuple in the list specifies what fraction of the axis length may be occupied by text, given the number of ticks that already have text displayed. For example:: [(0, 0.8), # Never fill more than 80% of the axis (2, 0.6), # If we already have 2 ticks with text, # fill no more than 60% of the axis (4, 0.4), # If we already have 4 ticks with text, # fill no more than 40% of the axis (6, 0.2)] # If we already have 6 ticks with text, # fill no more than 20% of the axis showValues (bool) indicates whether text is displayed adjacent to ticks. tickAlpha (float or int or None) If None, pyqtgraph will draw the ticks with the alpha it deems appropriate. Otherwise, the alpha will be fixed at the value passed. With int, accepted values are [0..255]. With value of type float, accepted values are from [0..1]. ===================== ======================================================= Added in version 0.9.9 """ for kwd,value in kwds.items(): if kwd not in self.style: raise NameError("%s is not a valid style argument." % kwd) if kwd in ('tickLength', 'tickTextOffset', 'tickTextWidth', 'tickTextHeight'): if not isinstance(value, int): raise ValueError("Argument '%s' must be int" % kwd) if kwd == 'tickTextOffset': if self.orientation in ('left', 'right'): self.style['tickTextOffset'][0] = value else: self.style['tickTextOffset'][1] = value elif kwd == 'stopAxisAtTick': try: assert len(value) == 2 and isinstance(value[0], bool) and isinstance(value[1], bool) except: raise ValueError("Argument 'stopAxisAtTick' must have type (bool, bool)") self.style[kwd] = value else: self.style[kwd] = value self.picture = None self._adjustSize() self.update()
def close(self): self.scene().removeItem(self.label) self.label = None self.scene().removeItem(self)
[docs] def setGrid(self, grid): """Set the alpha value (0-255) for the grid, or False to disable. When grid lines are enabled, the axis tick lines are extended to cover the extent of the linked ViewBox, if any. """ self.grid = grid self.picture = None self.prepareGeometryChange() self.update()
[docs] def setLogMode(self, *args, **kwargs): """ Set log scaling for x and/or y axes. If two positional arguments are provided, the first will set log scaling for the x axis and the second for the y axis. If a single positional argument is provided, it will set the log scaling along the direction of the AxisItem. Alternatively, x and y can be passed as keyword arguments. If an axis is set to log scale, ticks are displayed on a logarithmic scale and values are adjusted accordingly. (This is usually accessed by changing the log mode of a :func:`PlotItem <pyqtgraph.PlotItem.setLogMode>`.) The linked ViewBox will be informed of the change. """ if len(args) == 1: self.logMode = args[0] else: if len(args) == 2: x, y = args else: x = kwargs.get('x') y = kwargs.get('y') if x is not None and self.orientation in ('top', 'bottom'): self.logMode = x if y is not None and self.orientation in ('left', 'right'): self.logMode = y if self._linkedView is not None: if self.orientation in ('top', 'bottom'): self._linkedView().setLogMode('x', self.logMode) elif self.orientation in ('left', 'right'): self._linkedView().setLogMode('y', self.logMode) self.picture = None self.update()
[docs] def setTickFont(self, font): """ (QFont or None) Determines the font used for tick values. Use None for the default font. """ self.style['tickFont'] = font self.picture = None self.prepareGeometryChange() ## Need to re-allocate space depending on font size? self.update()
def resizeEvent(self, ev=None): #s = self.size() ## Set the position of the label nudge = 5 if self.label is None: # self.label is set to None on close, but resize events can still occur. self.picture = None return br = self.label.boundingRect() p = QtCore.QPointF(0, 0) if self.orientation == 'left': p.setY(int(self.size().height()/2 + br.width()/2)) p.setX(-nudge) elif self.orientation == 'right': p.setY(int(self.size().height()/2 + br.width()/2)) p.setX(int(self.size().width()-br.height()+nudge)) elif self.orientation == 'top': p.setY(-nudge) p.setX(int(self.size().width()/2. - br.width()/2.)) elif self.orientation == 'bottom': p.setX(int(self.size().width()/2. - br.width()/2.)) p.setY(int(self.size().height()-br.height()+nudge)) self.label.setPos(p) self.picture = None
[docs] def showLabel(self, show=True): """Show/hide the label text for this axis.""" #self.drawLabel = show self.label.setVisible(show) if self.orientation in ['left', 'right']: self._updateWidth() else: self._updateHeight() if self.autoSIPrefix: self.updateAutoSIPrefix()
[docs] def setLabel(self, text=None, units=None, unitPrefix=None, **args): """Set the text displayed adjacent to the axis. ============== ============================================================= **Arguments:** text The text (excluding units) to display on the label for this axis. units The units for this axis. Units should generally be given without any scaling prefix (eg, 'V' instead of 'mV'). The scaling prefix will be automatically prepended based on the range of data displayed. args All extra keyword arguments become CSS style options for the <span> tag which will surround the axis label and units. ============== ============================================================= The final text generated for the label will look like:: <span style="...options...">{text} (prefix{units})</span> Each extra keyword argument will become a CSS option in the above template. For example, you can set the font size and color of the label:: labelStyle = {'color': '#FFF', 'font-size': '14pt'} axis.setLabel('label text', units='V', **labelStyle) """ # `None` input is kept for backward compatibility! self.labelText = text or "" self.labelUnits = units or "" self.labelUnitPrefix = unitPrefix or "" if len(args) > 0: self.labelStyle = args # Account empty string and `None` for units and text visible = True if (text or units) else False self.showLabel(visible) self._updateLabel()
def _updateLabel(self): """Internal method to update the label according to the text""" self.label.setHtml(self.labelString()) self._adjustSize() self.picture = None self.update() def labelString(self): if self.labelUnits == '': if not self.autoSIPrefix or self.autoSIPrefixScale == 1.0: units = '' else: units = '(x%g)' % (1.0/self.autoSIPrefixScale) else: units = '(%s%s)' % (self.labelUnitPrefix, self.labelUnits) s = '%s %s' % (self.labelText, units) style = ';'.join(['%s: %s' % (k, self.labelStyle[k]) for k in self.labelStyle]) return "<span style='%s'>%s</span>" % (style, s) def _updateMaxTextSize(self, x): ## Informs that the maximum tick size orthogonal to the axis has ## changed; we use this to decide whether the item needs to be resized ## to accomodate. if self.orientation in ['left', 'right']: if self.style["autoReduceTextSpace"]: if x > self.textWidth or x < self.textWidth - 10: self.textWidth = x else: mx = max(self.textWidth, x) if mx > self.textWidth or mx < self.textWidth - 10: self.textWidth = mx if self.style['autoExpandTextSpace']: self._updateWidth() else: if self.style['autoReduceTextSpace']: if x > self.textHeight or x < self.textHeight - 10: self.textHeight = x else: mx = max(self.textHeight, x) if mx > self.textHeight or mx < self.textHeight - 10: self.textHeight = mx if self.style['autoExpandTextSpace']: self._updateHeight() def _adjustSize(self): if self.orientation in ['left', 'right']: self._updateWidth() else: self._updateHeight()
[docs] def setHeight(self, h=None): """Set the height of this axis reserved for ticks and tick labels. The height of the axis label is automatically added. If *height* is None, then the value will be determined automatically based on the size of the tick text.""" self.fixedHeight = h self._updateHeight()
def _updateHeight(self): if not self.isVisible(): h = 0 else: if self.fixedHeight is None: if not self.style['showValues']: h = 0 elif self.style['autoExpandTextSpace']: h = self.textHeight else: h = self.style['tickTextHeight'] h += self.style['tickTextOffset'][1] if self.style['showValues'] else 0 h += max(0, self.style['tickLength']) if self.label.isVisible(): h += self.label.boundingRect().height() * 0.8 else: h = self.fixedHeight self.setMaximumHeight(h) self.setMinimumHeight(h) self.picture = None
[docs] def setWidth(self, w=None): """Set the width of this axis reserved for ticks and tick labels. The width of the axis label is automatically added. If *width* is None, then the value will be determined automatically based on the size of the tick text.""" self.fixedWidth = w self._updateWidth()
def _updateWidth(self): if not self.isVisible(): w = 0 else: if self.fixedWidth is None: if not self.style['showValues']: w = 0 elif self.style['autoExpandTextSpace']: w = self.textWidth else: w = self.style['tickTextWidth'] w += self.style['tickTextOffset'][0] if self.style['showValues'] else 0 w += max(0, self.style['tickLength']) if self.label.isVisible(): w += self.label.boundingRect().height() * 0.8 ## bounding rect is usually an overestimate else: w = self.fixedWidth self.setMaximumWidth(w) self.setMinimumWidth(w) self.picture = None def pen(self): if self._pen is None: return fn.mkPen(getConfigOption('foreground')) return fn.mkPen(self._pen)
[docs] def setPen(self, *args, **kwargs): """ Set the pen used for drawing text, axes, ticks, and grid lines. If no arguments are given, the default foreground color will be used (see :func:`setConfigOption <pyqtgraph.setConfigOption>`). """ self.picture = None if args or kwargs: self._pen = fn.mkPen(*args, **kwargs) else: self._pen = fn.mkPen(getConfigOption('foreground')) self.labelStyle['color'] = self._pen.color().name() # #RRGGBB self._updateLabel()
def textPen(self): if self._textPen is None: return fn.mkPen(getConfigOption('foreground')) return fn.mkPen(self._textPen)
[docs] def setTextPen(self, *args, **kwargs): """ Set the pen used for drawing text. If no arguments are given, the default foreground color will be used. """ self.picture = None if args or kwargs: self._textPen = fn.mkPen(*args, **kwargs) else: self._textPen = fn.mkPen(getConfigOption('foreground')) self.labelStyle['color'] = self._textPen.color().name() # #RRGGBB self._updateLabel()
def tickPen(self): if self._tickPen is None: return self.pen() # Default to the main pen else: return fn.mkPen(self._tickPen)
[docs] def setTickPen(self, *args, **kwargs): """ Set the pen used for drawing tick marks. If no arguments are given, the default pen will be used. """ self.picture = None if args or kwargs: self._tickPen = fn.mkPen(*args, **kwargs) else: self._tickPen = None self._updateLabel()
[docs] def setScale(self, scale=None): """ Set the value scaling for this axis. Setting this value causes the axis to draw ticks and tick labels as if the view coordinate system were scaled. By default, the axis scaling is 1.0. """ if scale != self.scale: self.scale = scale self._updateLabel()
[docs] def enableAutoSIPrefix(self, enable=True): """ Enable (or disable) automatic SI prefix scaling on this axis. When enabled, this feature automatically determines the best SI prefix to prepend to the label units, while ensuring that axis values are scaled accordingly. For example, if the axis spans values from -0.1 to 0.1 and has units set to 'V' then the axis would display values -100 to 100 and the units would appear as 'mV' This feature is enabled by default, and is only available when a suffix (unit string) is provided to display on the label. """ self.autoSIPrefix = enable self.updateAutoSIPrefix()
def updateAutoSIPrefix(self): if self.label.isVisible(): if self.logMode: _range = 10**np.array(self.range) else: _range = self.range (scale, prefix) = fn.siScale(max(abs(_range[0]*self.scale), abs(_range[1]*self.scale))) if self.labelUnits == '' and prefix in ['k', 'm']: ## If we are not showing units, wait until 1e6 before scaling. scale = 1.0 prefix = '' self.autoSIPrefixScale = scale self.labelUnitPrefix = prefix else: self.autoSIPrefixScale = 1.0 self._updateLabel()
[docs] def setRange(self, mn, mx): """Set the range of values displayed by the axis. Usually this is handled automatically by linking the axis to a ViewBox with :func:`linkToView <pyqtgraph.AxisItem.linkToView>`""" if not isfinite(mn) or not isfinite(mx): raise Exception("Not setting range to [%s, %s]" % (str(mn), str(mx))) self.range = [mn, mx] if self.autoSIPrefix: # XXX: Will already update once! self.updateAutoSIPrefix() else: self.picture = None self.update()
[docs] def linkedView(self): """Return the ViewBox this axis is linked to.""" if self._linkedView is None: return None else: return self._linkedView()
def _linkToView_internal(self, view): # We need this code to be available without override, # even though DateAxisItem overrides the user-side linkToView method self.unlinkFromView() self._linkedView = weakref.ref(view) if self.orientation in ['right', 'left']: view.sigYRangeChanged.connect(self.linkedViewChanged) else: view.sigXRangeChanged.connect(self.linkedViewChanged) view.sigResized.connect(self.linkedViewChanged)
[docs] def linkToView(self, view): """Link this axis to a ViewBox, causing its displayed range to match the visible range of the view.""" self._linkToView_internal(view)
[docs] def unlinkFromView(self): """Unlink this axis from a ViewBox.""" oldView = self.linkedView() self._linkedView = None if self.orientation in ['right', 'left']: if oldView is not None: oldView.sigYRangeChanged.disconnect(self.linkedViewChanged) else: if oldView is not None: oldView.sigXRangeChanged.disconnect(self.linkedViewChanged) if oldView is not None: oldView.sigResized.disconnect(self.linkedViewChanged)
def linkedViewChanged(self, view, newRange=None): if self.orientation in ['right', 'left']: if newRange is None: newRange = view.viewRange()[1] if view.yInverted(): self.setRange(*newRange[::-1]) else: self.setRange(*newRange) else: if newRange is None: newRange = view.viewRange()[0] if view.xInverted(): self.setRange(*newRange[::-1]) else: self.setRange(*newRange) def boundingRect(self): m = 0 hide_overlapping_labels = self.style['hideOverlappingLabels'] if hide_overlapping_labels is True: pass # skip further checks elif hide_overlapping_labels is False: m = 15 else: try: m = int( self.style['hideOverlappingLabels'] ) except ValueError: pass # ignore any non-numeric value linkedView = self.linkedView() if linkedView is None or self.grid is False: rect = self.mapRectFromParent(self.geometry()) ## extend rect if ticks go in negative direction ## also extend to account for text that flows past the edges tl = self.style['tickLength'] if self.orientation == 'left': rect = rect.adjusted(0, -m, -min(0,tl), m) elif self.orientation == 'right': rect = rect.adjusted(min(0,tl), -m, 0, m) elif self.orientation == 'top': rect = rect.adjusted(-m, 0, m, -min(0,tl)) elif self.orientation == 'bottom': rect = rect.adjusted(-m, min(0,tl), m, 0) return rect else: return self.mapRectFromParent(self.geometry()) | linkedView.mapRectToItem(self, linkedView.boundingRect()) def paint(self, p, opt, widget): profiler = debug.Profiler() if self.picture is None: try: picture = QtGui.QPicture() painter = QtGui.QPainter(picture) if self.style["tickFont"]: painter.setFont(self.style["tickFont"]) specs = self.generateDrawSpecs(painter) profiler('generate specs') if specs is not None: self.drawPicture(painter, *specs) profiler('draw picture') finally: painter.end() self.picture = picture #p.setRenderHint(p.RenderHint.Antialiasing, False) ## Sometimes we get a segfault here ??? #p.setRenderHint(p.RenderHint.TextAntialiasing, True) self.picture.play(p)
[docs] def setTickDensity(self, density=1.0): """ The default behavior is to show at least two major ticks for axes of up to 300 pixels in length, then add additional major ticks, spacing them out further as the available room increases. (Internally, the targeted number of major ticks grows with the square root of the axes length.) Setting a tick density different from the default value of `density = 1.0` scales the number of major ticks that is targeted for display. This only affects the automatic generation of ticks. """ self._tickDensity = density self.picture = None self.update()
[docs] def setTicks(self, ticks): """Explicitly determine which ticks to display. This overrides the behavior specified by tickSpacing(), tickValues(), and tickStrings() The format for *ticks* looks like:: [ [ (majorTickValue1, majorTickString1), (majorTickValue2, majorTickString2), ... ], [ (minorTickValue1, minorTickString1), (minorTickValue2, minorTickString2), ... ], ... ] The two levels of major and minor ticks are expected. A third tier of additional ticks is optional. If *ticks* is None, then the default tick system will be used instead. """ self._tickLevels = ticks self.picture = None self.update()
[docs] def setTickSpacing(self, major=None, minor=None, levels=None): """ Explicitly determine the spacing of major and minor ticks. This overrides the default behavior of the tickSpacing method, and disables the effect of setTicks(). Arguments may be either *major* and *minor*, or *levels* which is a list of (spacing, offset) tuples for each tick level desired. If no arguments are given, then the default behavior of tickSpacing is enabled. Examples:: # two levels, all offsets = 0 axis.setTickSpacing(5, 1) # three levels, all offsets = 0 axis.setTickSpacing(levels=[(3, 0), (1, 0), (0.25, 0)]) # reset to default axis.setTickSpacing() """ if levels is None: if major is None: levels = None else: levels = [(major, 0), (minor, 0)] self._tickSpacing = levels self.picture = None self.update()
[docs] def tickSpacing(self, minVal, maxVal, size): """Return values describing the desired spacing and offset of ticks. This method is called whenever the axis needs to be redrawn and is a good method to override in subclasses that require control over tick locations. The return value must be a list of tuples, one for each set of ticks:: [ (major tick spacing, offset), (minor tick spacing, offset), (sub-minor tick spacing, offset), ... ] """ # First check for override tick spacing if self._tickSpacing is not None: return self._tickSpacing dif = abs(maxVal - minVal) if dif == 0: return [] ref_size = 300. # axes longer than this display more than the minimum number of major ticks minNumberOfIntervals = max( 2.25, # 2.0 ensures two tick marks. Fudged increase to 2.25 allows room for tick labels. 2.25 * self._tickDensity * sqrt(size/ref_size) # sub-linear growth of tick spacing with size ) majorMaxSpacing = dif / minNumberOfIntervals # We want to calculate the power of 10 just below the maximum spacing. # Then divide by ten so that the scale factors for subdivision all become intergers. # p10unit = 10**( floor( log10(majorMaxSpacing) ) ) / 10 # And we want to do it without a log operation: mantissa, exp2 = frexp(majorMaxSpacing) # IEEE 754 float already knows its exponent, no need to calculate p10unit = 10. ** ( # approximate a power of ten base factor just smaller than the given number floor( # int would truncate towards zero to give wrong results for negative exponents (exp2-1) # IEEE 754 exponent is ceiling of true exponent --> estimate floor by subtracting 1 / 3.32192809488736 # division by log2(10)=3.32 converts base 2 exponent to base 10 exponent ) - 1 # subtract one extra power of ten so that we can work with integer scale factors >= 5 ) # neglecting the mantissa can underestimate by one power of 10 when the true value is JUST above the threshold. if 100. * p10unit <= majorMaxSpacing: # Cheaper to check this than to use a more complicated approximation. majorScaleFactor = 10 p10unit *= 10. else: for majorScaleFactor in (50, 20, 10): if majorScaleFactor * p10unit <= majorMaxSpacing: break # find the first value that is smaller or equal majorInterval = majorScaleFactor * p10unit # manual sanity check: print(f"{majorMaxSpacing:.2e} > {majorInterval:.2e} = {majorScaleFactor:.2e} x {p10unit:.2e}") minorMinSpacing = 2 * dif/size # no more than one minor tick per two pixels if majorScaleFactor == 10: trials = (5, 10) # if major interval is 1.0, try minor interval of 0.5, fall back to same as major interval else: trials = (10, 20, 50) # if major interval is 2.0 or 5.0, try minor interval of 1.0, increase as needed for minorScaleFactor in trials: minorInterval = minorScaleFactor * p10unit if minorInterval >= minorMinSpacing: break # find the first value that is larger or equal to allowed minimum of 1 per 2px levels = [ (majorInterval, 0), (minorInterval, 0) ] # extra ticks at 10% of major interval are pretty, but eat up CPU if self.style['maxTickLevel'] >= 2: # consider only when enabled if majorScaleFactor == 10: trials = (1, 2, 5, 10) # start at 10% of major interval, increase if needed elif majorScaleFactor == 20: trials = (2, 5, 10, 20) # start at 10% of major interval, increase if needed elif majorScaleFactor == 50: trials = (5, 10, 50) # start at 10% of major interval, increase if needed else: # invalid value trials = () # skip extra interval extraInterval = minorInterval for extraScaleFactor in trials: extraInterval = extraScaleFactor * p10unit if extraInterval >= minorMinSpacing or extraInterval == minorInterval: break # find the first value that is larger or equal to allowed minimum of 1 per 2px if extraInterval < minorInterval: # add extra interval only if it is visible levels.append((extraInterval, 0)) return levels
[docs] def tickValues(self, minVal, maxVal, size): """ Return the values and spacing of ticks to draw:: [ (spacing, [major ticks]), (spacing, [minor ticks]), ... ] By default, this method calls tickSpacing to determine the correct tick locations. This is a good method to override in subclasses. """ minVal, maxVal = sorted((minVal, maxVal)) minVal *= self.scale maxVal *= self.scale #size *= self.scale ticks = [] tickLevels = self.tickSpacing(minVal, maxVal, size) allValues = np.array([]) for i in range(len(tickLevels)): spacing, offset = tickLevels[i] ## determine starting tick start = (ceil((minVal-offset) / spacing) * spacing) + offset ## determine number of ticks num = int((maxVal-start) / spacing) + 1 values = (np.arange(num) * spacing + start) / self.scale ## remove any ticks that were present in higher levels ## we assume here that if the difference between a tick value and a previously seen tick value ## is less than spacing/100, then they are 'equal' and we can ignore the new tick. close = np.any( np.isclose(allValues, values[:, np.newaxis], rtol=0, atol=spacing/self.scale*0.01) , axis=-1 ) values = values[~close] allValues = np.concatenate([allValues, values]) ticks.append((spacing/self.scale, values.tolist())) if self.logMode: return self.logTickValues(minVal, maxVal, size, ticks) #nticks = [] #for t in ticks: #nvals = [] #for v in t[1]: #nvals.append(v/self.scale) #nticks.append((t[0]/self.scale,nvals)) #ticks = nticks return ticks
def logTickValues(self, minVal, maxVal, size, stdTicks): ## start with the tick spacing given by tickValues(). ## Any level whose spacing is < 1 needs to be converted to log scale ticks = [] for (spacing, t) in stdTicks: if spacing >= 1.0: ticks.append((spacing, t)) if len(ticks) < 3: v1 = int(floor(minVal)) v2 = int(ceil(maxVal)) #major = list(range(v1+1, v2)) minor = [] for v in range(v1, v2): minor.extend(v + np.log10(np.arange(1, 10))) minor = [x for x in minor if x>minVal and x<maxVal] ticks.append((None, minor)) return ticks
[docs] def tickStrings(self, values, scale, spacing): """Return the strings that should be placed next to ticks. This method is called when redrawing the axis and is a good method to override in subclasses. The method is called with a list of tick values, a scaling factor (see below), and the spacing between ticks (this is required since, in some instances, there may be only one tick and thus no other way to determine the tick spacing) The scale argument is used when the axis label is displaying units which may have an SI scaling prefix. When determining the text to display, use value*scale to correctly account for this prefix. For example, if the axis label's units are set to 'V', then a tick value of 0.001 might be accompanied by a scale value of 1000. This indicates that the label is displaying 'mV', and thus the tick should display 0.001 * 1000 = 1. """ if self.logMode: return self.logTickStrings(values, scale, spacing) places = max(0, ceil(-log10(spacing*scale))) strings = [] for v in values: vs = v * scale if abs(vs) < .001 or abs(vs) >= 10000: vstr = "%g" % vs else: vstr = ("%%0.%df" % places) % vs strings.append(vstr) return strings
def logTickStrings(self, values, scale, spacing): estrings = ["%0.1g"%x for x in 10 ** np.array(values).astype(float) * np.array(scale)] convdict = {"0": "⁰", "1": "¹", "2": "²", "3": "³", "4": "⁴", "5": "⁵", "6": "⁶", "7": "⁷", "8": "⁸", "9": "⁹", } dstrings = [] for e in estrings: if e.count("e"): v, p = e.split("e") sign = "⁻" if p[0] == "-" else "" pot = "".join([convdict[pp] for pp in p[1:].lstrip("0")]) if v == "1": v = "" else: v = v + "·" dstrings.append(v + "10" + sign + pot) else: dstrings.append(e) return dstrings
[docs] def generateDrawSpecs(self, p): """ Calls tickValues() and tickStrings() to determine where and how ticks should be drawn, then generates from this a set of drawing commands to be interpreted by drawPicture(). """ profiler = debug.Profiler() if self.style['tickFont'] is not None: p.setFont(self.style['tickFont']) bounds = self.mapRectFromParent(self.geometry()) linkedView = self.linkedView() if linkedView is None or self.grid is False: tickBounds = bounds else: tickBounds = linkedView.mapRectToItem(self, linkedView.boundingRect()) left_offset = -1.0 right_offset = 1.0 top_offset = -1.0 bottom_offset = 1.0 if self.orientation == 'left': span = (bounds.topRight() + Point(left_offset, top_offset), bounds.bottomRight() + Point(left_offset, bottom_offset)) tickStart = tickBounds.right() tickStop = bounds.right() tickDir = -1 axis = 0 elif self.orientation == 'right': span = (bounds.topLeft() + Point(right_offset, top_offset), bounds.bottomLeft() + Point(right_offset, bottom_offset)) tickStart = tickBounds.left() tickStop = bounds.left() tickDir = 1 axis = 0 elif self.orientation == 'top': span = (bounds.bottomLeft() + Point(left_offset, top_offset), bounds.bottomRight() + Point(right_offset, top_offset)) tickStart = tickBounds.bottom() tickStop = bounds.bottom() tickDir = -1 axis = 1 elif self.orientation == 'bottom': span = (bounds.topLeft() + Point(left_offset, bottom_offset), bounds.topRight() + Point(right_offset, bottom_offset)) tickStart = tickBounds.top() tickStop = bounds.top() tickDir = 1 axis = 1 else: raise ValueError("self.orientation must be in ('left', 'right', 'top', 'bottom')") #print tickStart, tickStop, span ## determine size of this item in pixels points = list(map(self.mapToDevice, span)) if None in points: return lengthInPixels = Point(points[1] - points[0]).length() if lengthInPixels == 0: return # Determine major / minor / subminor axis ticks if self._tickLevels is None: tickLevels = self.tickValues(self.range[0], self.range[1], lengthInPixels) tickStrings = None else: ## parse self.tickLevels into the formats returned by tickLevels() and tickStrings() tickLevels = [] tickStrings = [] for level in self._tickLevels: values = [] strings = [] tickLevels.append((None, values)) tickStrings.append(strings) for val, strn in level: values.append(val) strings.append(strn) ## determine mapping between tick values and local coordinates dif = self.range[1] - self.range[0] if dif == 0: xScale = 1 offset = 0 else: if axis == 0: xScale = -bounds.height() / dif offset = self.range[0] * xScale - bounds.height() else: xScale = bounds.width() / dif offset = self.range[0] * xScale xRange = [x * xScale - offset for x in self.range] xMin = min(xRange) xMax = max(xRange) profiler('init') tickPositions = [] # remembers positions of previously drawn ticks ## compute coordinates to draw ticks ## draw three different intervals, long ticks first tickSpecs = [] for i in range(len(tickLevels)): tickPositions.append([]) ticks = tickLevels[i][1] ## length of tick tickLength = self.style['tickLength'] / ((i*0.5)+1.0) lineAlpha = self.style["tickAlpha"] if lineAlpha is None: lineAlpha = 255 / (i+1) if self.grid is not False: lineAlpha *= self.grid/255. * fn.clip_scalar((0.05 * lengthInPixels / (len(ticks)+1)), 0., 1.) elif isinstance(lineAlpha, float): lineAlpha *= 255 lineAlpha = max(0, int(round(lineAlpha))) lineAlpha = min(255, int(round(lineAlpha))) elif isinstance(lineAlpha, int): if (lineAlpha > 255) or (lineAlpha < 0): raise ValueError("lineAlpha should be [0..255]") else: raise TypeError("Line Alpha should be of type None, float or int") tickPen = self.tickPen() if tickPen.brush().style() == QtCore.Qt.BrushStyle.SolidPattern: # only adjust simple color pens tickPen = QtGui.QPen(tickPen) # copy to a new QPen color = QtGui.QColor(tickPen.color()) # copy to a new QColor color.setAlpha(int(lineAlpha)) # adjust opacity tickPen.setColor(color) for v in ticks: ## determine actual position to draw this tick x = (v * xScale) - offset if x < xMin or x > xMax: ## last check to make sure no out-of-bounds ticks are drawn tickPositions[i].append(None) continue tickPositions[i].append(x) p1 = [x, x] p2 = [x, x] p1[axis] = tickStart p2[axis] = tickStop if self.grid is False: p2[axis] += tickLength*tickDir tickSpecs.append((tickPen, Point(p1), Point(p2))) profiler('compute ticks') if self.style['stopAxisAtTick'][0] is True: minTickPosition = min(map(min, tickPositions)) if axis == 0: stop = max(span[0].y(), minTickPosition) span[0].setY(stop) else: stop = max(span[0].x(), minTickPosition) span[0].setX(stop) if self.style['stopAxisAtTick'][1] is True: maxTickPosition = max(map(max, tickPositions)) if axis == 0: stop = min(span[1].y(), maxTickPosition) span[1].setY(stop) else: stop = min(span[1].x(), maxTickPosition) span[1].setX(stop) axisSpec = (self.pen(), span[0], span[1]) textOffset = self.style['tickTextOffset'][axis] ## spacing between axis and text #if self.style['autoExpandTextSpace'] is True: #textWidth = self.textWidth #textHeight = self.textHeight #else: #textWidth = self.style['tickTextWidth'] ## space allocated for horizontal text #textHeight = self.style['tickTextHeight'] ## space allocated for horizontal text textSize2 = 0 lastTextSize2 = 0 textRects = [] textSpecs = [] ## list of draw # If values are hidden, return early if not self.style['showValues']: return (axisSpec, tickSpecs, textSpecs) for i in range(min(len(tickLevels), self.style['maxTextLevel']+1)): ## Get the list of strings to display for this level if tickStrings is None: spacing, values = tickLevels[i] strings = self.tickStrings(values, self.autoSIPrefixScale * self.scale, spacing) else: strings = tickStrings[i] if len(strings) == 0: continue ## ignore strings belonging to ticks that were previously ignored for j in range(len(strings)): if tickPositions[i][j] is None: strings[j] = None ## Measure density of text; decide whether to draw this level rects = [] for s in strings: if s is None: rects.append(None) else: br = p.boundingRect(QtCore.QRectF(0, 0, 100, 100), QtCore.Qt.AlignmentFlag.AlignCenter, s) ## boundingRect is usually just a bit too large ## (but this probably depends on per-font metrics?) br.setHeight(br.height() * 0.8) rects.append(br) textRects.append(rects[-1]) if len(textRects) > 0: ## measure all text, make sure there's enough room if axis == 0: textSize = np.sum([r.height() for r in textRects]) textSize2 = np.max([r.width() for r in textRects]) else: textSize = np.sum([r.width() for r in textRects]) textSize2 = np.max([r.height() for r in textRects]) else: textSize = 0 textSize2 = 0 if i > 0: ## always draw top level ## If the strings are too crowded, stop drawing text now. ## We use three different crowding limits based on the number ## of texts drawn so far. textFillRatio = float(textSize) / lengthInPixels finished = False for nTexts, limit in self.style['textFillLimits']: if len(textSpecs) >= nTexts and textFillRatio >= limit: finished = True break if finished: break lastTextSize2 = textSize2 #spacing, values = tickLevels[best] #strings = self.tickStrings(values, self.scale, spacing) # Determine exactly where tick text should be drawn for j in range(len(strings)): vstr = strings[j] if vstr is None: ## this tick was ignored because it is out of bounds continue x = tickPositions[i][j] #textRect = p.boundingRect(QtCore.QRectF(0, 0, 100, 100), QtCore.Qt.AlignmentFlag.AlignCenter, vstr) textRect = rects[j] height = textRect.height() width = textRect.width() #self.textHeight = height offset = max(0,self.style['tickLength']) + textOffset rect = QtCore.QRectF() if self.orientation == 'left': alignFlags = QtCore.Qt.AlignmentFlag.AlignRight|QtCore.Qt.AlignmentFlag.AlignVCenter rect = QtCore.QRectF(tickStop-offset-width, x-(height/2), width, height) elif self.orientation == 'right': alignFlags = QtCore.Qt.AlignmentFlag.AlignLeft|QtCore.Qt.AlignmentFlag.AlignVCenter rect = QtCore.QRectF(tickStop+offset, x-(height/2), width, height) elif self.orientation == 'top': alignFlags = QtCore.Qt.AlignmentFlag.AlignHCenter|QtCore.Qt.AlignmentFlag.AlignBottom rect = QtCore.QRectF(x-width/2., tickStop-offset-height, width, height) elif self.orientation == 'bottom': alignFlags = QtCore.Qt.AlignmentFlag.AlignHCenter|QtCore.Qt.AlignmentFlag.AlignTop rect = QtCore.QRectF(x-width/2., tickStop+offset, width, height) textFlags = alignFlags | QtCore.Qt.TextFlag.TextDontClip #p.setPen(self.pen()) #p.drawText(rect, textFlags, vstr) br = self.boundingRect() if not br.contains(rect): continue textSpecs.append((rect, textFlags, vstr)) profiler('compute text') ## update max text size if needed. self._updateMaxTextSize(lastTextSize2) return (axisSpec, tickSpecs, textSpecs)
def drawPicture(self, p, axisSpec, tickSpecs, textSpecs): profiler = debug.Profiler() p.setRenderHint(p.RenderHint.Antialiasing, False) p.setRenderHint(p.RenderHint.TextAntialiasing, True) ## draw long line along axis pen, p1, p2 = axisSpec p.setPen(pen) p.drawLine(p1, p2) # p.translate(0.5,0) ## resolves some damn pixel ambiguity ## draw ticks for pen, p1, p2 in tickSpecs: p.setPen(pen) p.drawLine(p1, p2) profiler('draw ticks') # Draw all text if self.style['tickFont'] is not None: p.setFont(self.style['tickFont']) p.setPen(self.textPen()) bounding = self.boundingRect().toAlignedRect() p.setClipRect(bounding) for rect, flags, text in textSpecs: p.drawText(rect, int(flags), text) profiler('draw text') def show(self): GraphicsWidget.show(self) if self.orientation in ['left', 'right']: self._updateWidth() else: self._updateHeight() def hide(self): GraphicsWidget.hide(self) if self.orientation in ['left', 'right']: self._updateWidth() else: self._updateHeight() def wheelEvent(self, event): lv = self.linkedView() if lv is None: return # Did the event occur inside the linked ViewBox (and not over the axis iteself)? if lv.sceneBoundingRect().contains(event.scenePos()): event.ignore() return else: # pass event to linked viewbox with appropriate single axis zoom parameter if self.orientation in ['left', 'right']: lv.wheelEvent(event, axis=1) else: lv.wheelEvent(event, axis=0) event.accept() def mouseDragEvent(self, event): lv = self.linkedView() if lv is None: return # Did the mouse down event occur inside the linked ViewBox (and not the axis)? if lv.sceneBoundingRect().contains(event.buttonDownScenePos()): event.ignore() return # otherwise pass event to linked viewbox with appropriate single axis parameter if self.orientation in ['left', 'right']: return lv.mouseDragEvent(event, axis=1) else: return lv.mouseDragEvent(event, axis=0) def mouseClickEvent(self, event): lv = self.linkedView() if lv is None: return return lv.mouseClickEvent(event)